Abstract
The loss of previously established genes has been proposed as a major force in evolutionary change. While the sequencing of many new species offers the opportunity to identify cases of gene loss, the best method to do this with is unclear. A number of methods to identify gene losses rely on the presence of a pseudogene for each loss. If genes are completely or largely removed from the genome, however, such methods will fail to identify these cases. As the fate of gene losses is still unclear, we attempt to identify losses using nine Drosophila genomes and determine whether these lost genes leave behind pseudogenes in the lineage leading to D. melanogaster. We were able to find 109 cases of unambiguous gene loss. Of these, a maximum of 18 have identifiable pseudogenes, while the other 91 do not. We were also able to identify a large number of previously unannotated genes in the D. melanogaster genome, most of which also had evidence for transcription. Though our results suggest that pseudogene-based methods for finding gene losses will miss a large proportion of these events, we discuss the dependence of these conclusions on the divergence times among the species considered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nielsen, R., Bustamante, C., Clark, A., Glanowski, S., Sackton, T., et al.: A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005)
Dermitzakis, E., Reymond, A., Lyle, R., Scamuffa, N., Ucla, C., et al.: Numerous potentially functional but non-genic conserved sequences on human chromosome 21. Nature 420, 578–582 (2002)
Pollard, K., Salama, S., Lambert, N., Lambot, M., Coppens, S., et al.: An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443, 167–712 (2006)
Aravind, L., Watanabe, H., Lipman, D., Koonin, E.: Lineage-specific loss and divergence of functionally linked genes in eukaryotes. PNAS USA 97, 11319–11324 (2000)
Hughes, A., Friedman, R.: Recent mammalian gene duplications: robust search for functionally divergent gene pairs. J. Mol. Evo. 59, 114–120 (2004)
Roelofs, J., Van Haastert, P.: Genes lost during evolution. Nature 411, 1013–1014 (2001)
Olson, M.: When less is more: gene loss as an engine of evolutionary change, American journal of human genetics. Am. J. Human Genet. 64, 18–23 (1999)
Olson, M., Varki, A.: Sequencing the chimpanzee genome: insights into human evolution and disease. Nature Rev. 4, 20–28 (2003)
Chou, H., Takematsu, H., Diaz, S., Iber, J., Nickerson, E., et al.: A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. PNAS USA 95, 11751–11756 (1998)
Szabo, Z., Levi-Minzi, S., Christiano, A., Struminger, C., Stoneking, M., et al.: Sequential loss of two neighboring exons of the tropoelastin gene during primate evolution. J. Mol. Evo. 49, 664–671 (1999)
Angata, T., Margulies, E., Green, E., Varki, A.: Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. PNAS USA 101, 13251–13256 (2004)
Stedman, H., Kozyak, B., Nelson, A., Thesier, D., Su, L., et al.: Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 428, 415–418 (2004)
Hahn, Y., Lee, B.: Identification of nine human-specific frameshift mutations by comparative analysis of the human and the chimpanzee genome sequences. Bioinformatics 21(suppl.1), 186–194 (2005)
Wang, X., Grus, W., Zhang, J.: Gene losses during human origins. PLoS Biol. 4, 52 (2006)
Zhu, J., Sanborn, J., Diekhans, M., Lowe, C., Pringle, T., Haussler, D.: Comparative Genomics Search for Losses of Long-Established Genes on the Human Lineage. PLoS Comput. Biol. 3, 247 (2007)
Kvikstad, E., Tyekucheva, S., Chiaromonte, F., Makova, K.: A macaque’s-eye view of human insertions and deletions: differences in mechanisms. PLoS Comput. Biol. 3, 1772–1782 (2007)
Petrov, D., Hartl, D.: Patterns of nucleotide substitution in Drosophila and mammalian genomes. PNAS USA 96, 1475–1479 (1999)
Stark, A., Lin, M., Kheradpour, P., Pedersen, J., Parts, L., et al.: Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. nature 450, 219–232 (2007)
Clark, A., Eisen, M., Smith, D., Bergman, C., Oliver, B., et al.: Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–208 (2007)
Richards, S., Liu, Y., Bettencourt, B., Hradecky, P., Letovsky, S., et al.: Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution. Genome Res. 15, 1–18 (2005)
Hahn, M., Han, M., Han, S.G.: Gene Family Evolution across 12 Drosophila Genomes. PLoS Genet. 3, e197 (2007)
Hoskins, R., Carlson, J., Kennedy, C., Acevedo, D., Evans-Holm, M., et al.: Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science 316, 1625–1628 (2007)
Smith, C., Shu, S., Mungall, C., Karpen, G.: The Release 5.1 annotation of Drosophila melanogaster heterochromatin. Science 316, 1586–1591 (2007)
Birney, E., Clamp, M., Durbin, R.: GeneWise and Genomewise. Genome Res. 14, 988–995 (2004)
Long, M.: A new function evolved from gene fusion. Genome Res. 10, 1655–1657 (2000)
Zhang, Z., Gerstein, M.: Large-scale analysis of pseudogenes in the human genome. Curr. Opin. Genet. Dev. 14, 328–335 (2004)
Demuth, J., De Bie, T., Stajich, J., Cristianini, N., Hahn, M.: The evolution of mammalian gene families. PLoS One 1, e85 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Costello, J.C., Han, M.V., Hahn, M.W. (2008). Limitations of Pseudogenes in Identifying Gene Losses. In: Nelson, C.E., Vialette, S. (eds) Comparative Genomics. RECOMB-CG 2008. Lecture Notes in Computer Science(), vol 5267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87989-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-87989-3_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87988-6
Online ISBN: 978-3-540-87989-3
eBook Packages: Computer ScienceComputer Science (R0)