Abstract
Chemical coupling between neurons is only active when the pre-synaptic neuron is firing, and thus it does not allow for the propagation of subthreshold activity. Electrical coupling via gap junctions, on the other hand, is also ubiquitous and, due to its diffusive nature, transmits both subthreshold and suprathreshold activity between neurons. We study theoretically the propagation of spikes between two neurons that exhibit strong subthreshold oscillations, and which are coupled via both chemical synapses and gap junctions. Due to the electrical coupling, the periodic subthreshold activity is synchronized in the two neurons, and affects propagation of spikes in such a way that for certain values of the delay in the synaptic coupling, propagation is not possible. This effect could provide a mechanism for the modulation of information transmission in neuronal networks.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)
Llinas, R.R., Grace, A.A., Yarom, Y.: In vitro Neurons in Mammalian Cortical Layer 4 Exhibit Intrinsic Oscillatory Activity in the 10- to 50-Hz Frequency Range. Proceedings of the National Academy of Science, 88, 897–901 (1991)
Giocomo, L.M., Zilli, E.A., Fransen, E., Hasselmo, M.E.: Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315(5819), 1719–1722 (2007)
Makarov, V.A., Nekorkin, V.I., Velarde, M.G.: Spiking behavior in a noise-driven system combining oscillatory and excitatory properties. Physical Review Letters 86(15), 3431–3434 (2001)
Balenzuela, P., Garcia-Ojalvo, J.: Role of chemical synapses in coupled neurons with noise. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 72(2), 021901–7 (2005)
Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Comput. 6(1), 14–18 (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sancristóbal, B., Sancho, J.M., García-Ojalvo, J. (2008). Resonant Spike Propagation in Coupled Neurons with Subthreshold Activity. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_72
Download citation
DOI: https://doi.org/10.1007/978-3-540-87559-8_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87558-1
Online ISBN: 978-3-540-87559-8
eBook Packages: Computer ScienceComputer Science (R0)