[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning of Neural Information Routing for Correspondence Finding

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5164))

Included in the following conference series:

Abstract

We present a neural network model that learns to find correspondences. The network uses control units that gate feature information from an input to a model layer of neural feature detectors. The control units communicate via a network of lateral connections to coordinate the gating of feature information such that information about spatial feature arrangements can be used for correspondence finding. Using synaptic plasticity to modify the connections amongst control units, we show that the network can learn to find the relevant neighborhood relationship of features in a given class of input patterns. In numerical simulations we show quantitative results on pairs of one-dimensional artificial inputs and preliminary results on two-dimensional natural images. In both cases the system gradually learns the structure of feature neighborhood relations and uses this information to gradually improve in the task of correspondence finding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 93.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hinton, G.E.: A parallel computation that assigns canonical object-based frames of reference. In: Proc. IJCAI, pp. 683–685 (1981)

    Google Scholar 

  2. Olshausen, B.A., Anderson, C.H., Van Essen, D.C.: A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. The Journal of Neuroscience 13(11), 4700–4719 (1993)

    Google Scholar 

  3. Wiskott, L., von der Malsburg, C.: Face recognition by dynamic link matching. In: Sirosh, J., Miikkulainen, R., Choe, Y. (eds.) Lateral Interactions in the Cortex: Structure and Function, ch. 4 (1995), www.cs.utexas.edu/users/nn/book/bwdraft.html ISBN 0-9647060-0-8

  4. Zhu, J., von der Malsburg, C.: Maplets for correspondence-based object recognition. Neural Networks 17(8–9), 1311–1326 (2004)

    Article  Google Scholar 

  5. Messer, K., Kittler, J., Sadeghi, M., Hamouz, M., Kostin, A., et al.: Face authentication test on the BANCA database. In: Proceedings of the International Conference on Pattern Recognition, Cambridge, vol. 4, pp. 523–532 (2004)

    Google Scholar 

  6. Weber, C., Wermter, S.: A self-organizing map of sigma-pi units. Neurocomputing 70(13-15), 2552–2560 (2007)

    Article  Google Scholar 

  7. Lücke, J., Keck, C., von der Malsburg, C.: Rapid convergence to neural feature field correspondences. Neural Computation (page accepted, 2007)

    Google Scholar 

  8. Lücke, J., Bouecke, J.D.: Dynamics of cortical columns – self-organization of receptive fields. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 31–37. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Lücke, J., von der Malsburg, C.: Rapid correspondence finding in networks of cortical columns. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 668–677. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Lades, M., Vorbrüggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C., Würtz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers 42(3), 300–311 (1993)

    Article  Google Scholar 

  11. Mel, B.W.: SEEMORE: Combining color, shape, and texture histogramming in a neurally-inspired approach to visual object recognition. Neural Computation 9, 777–804 (1997)

    Article  Google Scholar 

  12. Sali, E., Ullman, S.: Combining class-specific fragments for object classification. In: Pridmore, T.P., Elliman, D. (eds.) BMVC, British Machine Vision Association (1999)

    Google Scholar 

  13. Zhu, J., von der Malsburg, C.: Learning control units for invariant recognition. Neurocomputing 52–54, 447–453 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bouecke, J.D., Lücke, J. (2008). Learning of Neural Information Routing for Correspondence Finding. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87559-8_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87558-1

  • Online ISBN: 978-3-540-87559-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics