[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Implementing Fuzzy Reasoning on a Spiking Neural Network

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5164))

Included in the following conference series:

Abstract

This paper presents a supervised training algorithm that implements fuzzy reasoning on a spiking neural network. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be responsive to certain spike train frequencies. The receptive fields behave in a similar manner as fuzzy membership functions. The network is supervised but learning only occurs locally as in the biological case. The connectivity of the hidden and output layers is representative of a fuzzy rule base. The advantages and disadvantages of the network topology for the IRIS classification task are demonstrated and directions of current and future work are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 93.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Maass, W.: Networks of Spiking Neurons: The Third Generation of Neural Network Models. Electronic Colloquium on Computational Complexity (ECCC) 3(31) (1996)

    Google Scholar 

  2. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nature Neuroscience 2, 1178–1183 (2000)

    Article  Google Scholar 

  4. Bohte, S.M., Kok, J.N., La Poutre, H.: Error-backpropagation in Temporally Encoded Networks of Spiking Neurons. Neurocomputing 48, 17–37 (2002)

    Article  MATH  Google Scholar 

  5. Belatreche, A., Maguire, L.P., McGinnity, T.M., Wu, Q.X.: A Method for Supervised Training of Spiking Neural Networks. In: IEEE Cybernetics Intelligence. Challenges and Advances (CICA), pp. 39–44 (2003)

    Google Scholar 

  6. Sougne, J.P.: A learning algorithm for synfire chains. Connectionist Models of Learning, Development and Evolution, pp. 23–32 (2001)

    Google Scholar 

  7. Ruf, B., Schmitt, M.: Learning temporally encoded patterns in networks of spiking neurons. Neural Processing Letters 5(1), 9–18 (1997)

    Article  Google Scholar 

  8. Carnell, A., Richardson, D.: Linear algebra for time series of spikes. In: 13th European Symposium on Artificial Neural Networks (ESANN) (2005)

    Google Scholar 

  9. Pfister, J.P., Barber, D., Gerstner, W.: Optimal Hebbian Learning: A Probabilistic Point of View. In: ICANN/ICONIP Lecture Notes in Computer Science, vol. 2714, pp. 92–98 (2003)

    Google Scholar 

  10. Kasinski, A., Ponulak, F.: Comparison of Supervised Learning Methods for Spike Time Coding in Spiking Neural Networks (2005), http://matwbn.icm.edu.pl/ksiazki/amc/amc16/amc1617.pdf

  11. Tsodyks, M., Pawelzik, K., Markram, H.: Neural Networks with Dynamic Synapses. Neural Computation 10(4), 821–835 (1998)

    Article  Google Scholar 

  12. Natschlager, T., Maass, W., Zador, A.: Efficient temporal processing with biologically realistic dynamic synapses. Network: Computation in Neural Systems 12, 75–87 (2001)

    Article  Google Scholar 

  13. Barlow, H.B.: Summation and inhibition in the frogfs retina. J. Physiol. 119, 69–88 (1953)

    Google Scholar 

  14. Fischer, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7, 179–188 (1936)

    Google Scholar 

  15. Abdelbar, A.M., Hassan, D.O., Tagliarini, G.A., Narayan, S.: Receptive Field Optimisation for Ensemble Encoding. Neural. Comput. & Applic. 15(1), 1–8 (2006)

    Article  Google Scholar 

  16. Dunn, J.: A fuzzy relative of the ISODATA process and its use in detecting compact wellseparated clusters. Journal of Cybernetics 3, 32–57 (1973)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glackin, C., McDaid, L., Maguire, L., Sayers, H. (2008). Implementing Fuzzy Reasoning on a Spiking Neural Network. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87559-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87558-1

  • Online ISBN: 978-3-540-87559-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics