[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Engineering Stochastic Local Search for the Low Autocorrelation Binary Sequence Problem

  • Conference paper
Principles and Practice of Constraint Programming (CP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5202))

Abstract

This paper engineers a new state-of-the-art Stochastic Local Search (SLS) for the Low Autocorrelation Binary Sequence (LABS) problem. The new SLS solver is obtained with white-box visualization to get insights on how an SLS can be effective for LABS; implementation improvements; and black-box parameter tuning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. CSPLIB: A Problem Library for Constraints, http://www.csplib.org

  2. Mertens, S.: Exhaustive search for low-autocorrelation binary sequences. Journal of Physics A: Mathematical and General 29, 473–481 (1996)

    Article  MathSciNet  Google Scholar 

  3. Brglez, F., Xiao, Y.L., Stallmann, M.F., Militzer, B.: Reliable Cost Predictions for Finding Optimal Solutions to LABS Problem: Evolutionary and Alternative Algorithms. In: Intl. Workshop on Frontiers in Evolutionary Algorithms (2003)

    Google Scholar 

  4. Dotú, I., van Hentenryck, P.: A Note on Low Autocorrelation Binary Sequences. In: Constraint Programming, pp. 685–689 (2006)

    Google Scholar 

  5. Gallardo, J.E., Cotta, C., Fernández, A.J.: A Memetic Algorithm for the Low Autocorrelation Binary Sequence Problem. In: GECCO, pp. 1226–1233 (2007)

    Google Scholar 

  6. Halim, S., Yap, R.H.C., Lau, H.C.: An Integrated White+Black Box Approach for Designing and Tuning SLS. In: Constraint Programming, pp. 332–347 (2007)

    Google Scholar 

  7. Halim, S., Yap, R.H.C., Lau, H.C.: Viz: A Visual Analysis Suite for Explaining Local Search Behavior. In: ACM User Interface Software & Technology, pp. 57–66 (2006)

    Google Scholar 

  8. Halim, S., Yap, R.H.C.: Designing and Tuning SLS through Animation and Graphics: an Extended Walk-through. In: Engineering SLS Algorithms, pp. 16–30 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter J. Stuckey

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halim, S., Yap, R.H.C., Halim, F. (2008). Engineering Stochastic Local Search for the Low Autocorrelation Binary Sequence Problem. In: Stuckey, P.J. (eds) Principles and Practice of Constraint Programming. CP 2008. Lecture Notes in Computer Science, vol 5202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85958-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85958-1_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85957-4

  • Online ISBN: 978-3-540-85958-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics