Abstract
This paper engineers a new state-of-the-art Stochastic Local Search (SLS) for the Low Autocorrelation Binary Sequence (LABS) problem. The new SLS solver is obtained with white-box visualization to get insights on how an SLS can be effective for LABS; implementation improvements; and black-box parameter tuning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
CSPLIB: A Problem Library for Constraints, http://www.csplib.org
Mertens, S.: Exhaustive search for low-autocorrelation binary sequences. Journal of Physics A: Mathematical and General 29, 473–481 (1996)
Brglez, F., Xiao, Y.L., Stallmann, M.F., Militzer, B.: Reliable Cost Predictions for Finding Optimal Solutions to LABS Problem: Evolutionary and Alternative Algorithms. In: Intl. Workshop on Frontiers in Evolutionary Algorithms (2003)
Dotú, I., van Hentenryck, P.: A Note on Low Autocorrelation Binary Sequences. In: Constraint Programming, pp. 685–689 (2006)
Gallardo, J.E., Cotta, C., Fernández, A.J.: A Memetic Algorithm for the Low Autocorrelation Binary Sequence Problem. In: GECCO, pp. 1226–1233 (2007)
Halim, S., Yap, R.H.C., Lau, H.C.: An Integrated White+Black Box Approach for Designing and Tuning SLS. In: Constraint Programming, pp. 332–347 (2007)
Halim, S., Yap, R.H.C., Lau, H.C.: Viz: A Visual Analysis Suite for Explaining Local Search Behavior. In: ACM User Interface Software & Technology, pp. 57–66 (2006)
Halim, S., Yap, R.H.C.: Designing and Tuning SLS through Animation and Graphics: an Extended Walk-through. In: Engineering SLS Algorithms, pp. 16–30 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Halim, S., Yap, R.H.C., Halim, F. (2008). Engineering Stochastic Local Search for the Low Autocorrelation Binary Sequence Problem. In: Stuckey, P.J. (eds) Principles and Practice of Constraint Programming. CP 2008. Lecture Notes in Computer Science, vol 5202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85958-1_57
Download citation
DOI: https://doi.org/10.1007/978-3-540-85958-1_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85957-4
Online ISBN: 978-3-540-85958-1
eBook Packages: Computer ScienceComputer Science (R0)