[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Probabilistically Estimating Backbones and Variable Bias: Experimental Overview

  • Conference paper
Principles and Practice of Constraint Programming (CP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5202))

Abstract

Backbone variables have the same assignment in all solutions to a given constraint satisfaction problem; more generally, bias represents the proportion of solutions that assign a variable a particular value. Intuitively such constructs would seem important to efficient search, but their study to date has been from a mostly conceptual perspective, in terms of indicating problem hardness or motivating and interpreting heuristics. Here we summarize a two-phase project where we first measure the ability of both existing and novel probabilistic message-passing techniques to directly estimate bias and identify backbones for the Boolean Satisfiability (SAT) Problem. We confirm that methods like Belief Propagation and Survey Propagation–plus Expectation Maximization-based variants–do produce good estimates with distinctive properties. The second phase demonstrates the use of bias estimation within a modern SAT solver, exhibiting a correlation between accurate, stable, estimates and successful backtracking search. The same process also yields a family of search heuristics that can dramatically improve search efficiency for the hard random problems considered.

This article summarizes a more detailed description that is available as a technical report [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hsu, E., Muise, C., Beck, J.C., McIlraith, S.: Applying probabilistic inference to heuristic search by estimating variable bias. Technical Report CSRG-577, University of Toronto (2008)

    Google Scholar 

  2. Braunstein, A., Mezard, M., Zecchina, R.: Survey propagation: An algorithm for satisfiability. Random Structures and Algorithms 27, 201–226 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dechter, R., Kask, K., Mateescu, R.: Iterative join-graph propagation. In: Proc. of 18th Int’l Conference on Uncertainty in A.I (UAI 2002), Edmonton, Canada, pp. 128–136 (2002)

    Google Scholar 

  4. Hsu, E., Kitching, M., Bacchus, F., McIlraith, S.: Using EM to find likely assignments for solving CSP’s. In: Proc. of 22nd National Conference on Artificial Intelligence (AAAI 2007), Vancouver, Canada (2007)

    Google Scholar 

  5. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic phase transitions. Nature 400(7), 133–137 (1999)

    Article  MathSciNet  Google Scholar 

  6. Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfiability. In: Proc. of 20th National Conference on A.I (AAAI 2005), Pittsburgh, PA (2005)

    Google Scholar 

  7. Singer, J., Gent, I., Smaill, A.: Backbone fragility and the local search cost peak. Journal of Artificial Intelligence Research 12, 235–270 (2000)

    MATH  MathSciNet  Google Scholar 

  8. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard 3-SAT formulae. In: Proc. of 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), Seattle, WA (2001)

    Google Scholar 

  9. Zhang, W.: Configuration landscape analysis and backbone guided local search. Part I: Satisfiability and maximum satisfiability. Artificial Intelligence 158(1), 1–26 (2004)

    MATH  Google Scholar 

  10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Google Scholar 

  11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  12. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47(2) (2001)

    Google Scholar 

  13. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society 39(1), 1–39 (1977)

    MATH  MathSciNet  Google Scholar 

  14. Jordan, M., Ghahramani, Z., Jaakkola, T., Saul, L.: An introduction to variational methods for graphical models. In: Jordan, M. (ed.) Learning in Graphical Models. MIT Press, Cambridge (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter J. Stuckey

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hsu, E.I., Muise, C.J., Beck, J.C., McIlraith, S.A. (2008). Probabilistically Estimating Backbones and Variable Bias: Experimental Overview. In: Stuckey, P.J. (eds) Principles and Practice of Constraint Programming. CP 2008. Lecture Notes in Computer Science, vol 5202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85958-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85958-1_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85957-4

  • Online ISBN: 978-3-540-85958-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics