[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Advances in Soft Computing ((AINSC,volume 50))

Abstract

High-performance scheduling is critical to the achievement of application performance on the computational grid. New scheduling algorithms are in demand for addressing new concerns arising in the grid environment. One of the main phases of scheduling on a grid is related to the load balancing problem therefore having a high-performance method to deal with the load balancing problem is essential to obtain a satisfactory high-performance scheduling. This paper presents SAGE, a new high-performance method to cover the dynamic load balancing problem by means of a simulated annealing algorithm. Even though this problem has been addressed with several different approaches only one of these methods is related with simulated annealing algorithm. Preliminary results show that SAGE not only makes it possible to find a good solution to the problem (effectiveness) but also in a reasonable amount of time (efficiency).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, A., Buyya, R., Nath, B.: Nature’s Heuristics for Scheduling Jobs in Computational Grids. In: Sinha, P.S., Gupta, R. (eds.) Proc. 8th IEEE International Conference on Advanced Computing and Communications (ADCOM2000), pp. 45–52. Tata McGraw-Hill Publishing Co. Ltd, New Delhi (2000)

    Google Scholar 

  2. Abraham, A., Liu, H., Zhang, W., Chang, T.G.: Scheduling Jobs on Computational Grids Using Fuzzy Particle Swarm Algorithm. In: Proc. of 10th International Conference on Knowledge-Based & Intelligent Information & Engineering Systems, England, pp. 500–507 (2006)

    Google Scholar 

  3. Berman, F.: High-performance schedulers. In: Foster, I., Kesselman, C. (eds.) The Grid: Blueprint for a New Computing Infrastructure, pp. 279–309. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  4. Braun, R., Siegel, H., Beck, N., Boloni, L., Maheswaran, M., Reuther, A., Robertson, J., Theys, M., Yao, B., Hensgen, D., Freund, R.: A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems. Journal of Parallel and Distributed Computing 61(6), 810–837 (2001)

    Article  Google Scholar 

  5. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic Models for Resource Management and Scheduling in Grid Computing. Journal of Concurrency and Computation: Practice and Experience 14(13-15), 1507–1542 (2002)

    Article  MATH  Google Scholar 

  6. Cao, J., Spooner, D.P., Jarvis, S.A., Nudd, G.R.: Grid load balancing using intelligent agents. Future Generation Computer Systems 21(1), 135–149 (2005)

    Article  Google Scholar 

  7. Fangpeng, D., Selim, G.A.: Scheduling Algorithms for Grid Computing: State of the Art and Open Problems Technical Report No. 2006-504, Queen’s University, Canada, 55 pages (2006), http://www.cs.queensu.ca/TechReports/Reports/2006-504.pdf

  8. Fernandez-Baca, D.: Allocating Modules to Processors in a Distributed System. IEEE Transactions on Software Engineering 15(11), 1427–1436 (1989)

    Article  Google Scholar 

  9. Fidanova, S.: Simulated Annealing for Grid Scheduling Problem. In: Proc. IEEE John Vincent Atanasoff International Symposium on Modern Computing (JVA 2006), 10.1109/JVA.2006.44, pp. 41–44 (2006)

    Google Scholar 

  10. Fidanova, S., Durchova, M.: Ant Algorithm for Grid Scheduling Problem. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 405–412. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International Journal of Supercomputer applications and High Performance Computing 15(3), 200–222 (2001)

    Article  Google Scholar 

  12. Grosan, C., Abraham, A., Helvik, B.: Multiobjective Evolutionary Algorithms for Scheduling Jobs on Computational Grids. In: Guimares, N., Isaias, P. (eds.) IADIS International Conference, Applied Computing 2007, Salamanca, Spain, pp. 459–463 (2007) ISBN: 978-972-8924-30-0

    Google Scholar 

  13. Herrero, P., Bosque, J.L., Pérez, M.S.: An Agents-Based Cooperative Awareness Model to Cover Load Balancing Delivery in Grid Environments. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part I. LNCS, vol. 4805, pp. 64–74. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Herrero, P., Bosque, J.L., Pérez, M.S.: Managing Dynamic Virtual Organizations to get Effective Cooperation in Collaborative Grid Environments. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part II. LNCS, vol. 4804, pp. 1435–1452. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Kirkpatrick, S.: Optimization by Simulated Annealing: Quantitative Studies. Journal of Statistical Physics 34(5-6), 975–986 (1984)

    Article  MathSciNet  Google Scholar 

  16. Kumar, K.P., Agarwal, A., Krishnan, R.: Fuzzy based resource management framework for high throughput computing. In: Proc. of the 2004 IEEE International Symposium on Cluster Computing and the Grid, pp. 555–562 (2004)

    Google Scholar 

  17. Lorpunmanee, S., Sap, M.N., Abdullah, A.H., Chompoo-inwai, C.: An Ant Colony Optimization for Dynamic Job Scheduling in Grid Environment. International Journal of Computer and Information Science and Engineering 1(4), 207–214 (2007)

    Google Scholar 

  18. McMullan, P., McCollum, B.: Dynamic Job Scheduling on the Grid Environment Using the Great Deluge Algorithm. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 283–292. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. Journal of Chemical Physics 21(6), 1087–1091 (1953)

    Article  Google Scholar 

  20. Ritchie, G., Levine, J.: A fast, effective local search for scheduling independent jobs in heterogeneous computing environments, Technical report, Centre for Intelligent Systems and their Applications, School of Informatics, University of Edinburgh (2003)

    Google Scholar 

  21. Yarkhan, A., Dongarra, J.: Experiments with Scheduling Using Simulated Annealing in a Grid Environment. In: Parashar, M. (ed.) GRID 2002. LNCS, vol. 2536, pp. 232–242. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Ye, G., Rao, R., Li, M.: A Multiobjective Resources Scheduling Approach Based on Genetic Algorithms in Grid Environment. In: Fifth International Conference on Grid and Cooperative Computing Workshops, pp. 504–509 (2006)

    Google Scholar 

  23. Young, L., McGough, S., Newhouse, S., Darlington, J.: Scheduling Architecture and Algorithms within the ICENI Grid Middleware. In: Proc. of UK e-Science All Hands Meeting, Nottingham, pp. 5–12 (2003)

    Google Scholar 

  24. Zomaya, A.Y., The, Y.H.: Observations on using genetic algorithms for dynamic load-balancing. IEEE Transactions On Parallel and Distributed Systems 12(9), 899–911 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Juan M. Corchado Sara Rodríguez James Llinas José M. Molina

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paletta, M., Herrero, P. (2009). A Simulated Annealing Method to Cover Dynamic Load Balancing in Grid Environment. In: Corchado, J.M., Rodríguez, S., Llinas, J., Molina, J.M. (eds) International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008). Advances in Soft Computing, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85863-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85863-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85862-1

  • Online ISBN: 978-3-540-85863-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics