[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Comparison of Evolvable Hardware Architectures for Classification Tasks

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5216))

Included in the following conference series:

Abstract

We analyze and compare four different evolvable hardware approaches for classification tasks: An approach based on a programmable logic array architecture, an approach based on two-phase incremental evolution, a generic logic architecture with automatic definition of building blocks, and a specialized coarse-grained architecture with pre-defined building blocks. We base the comparison on a common data set and report on classification accuracy and training effort. The results show that classification accuracy can be increased by using modular, specialized classifier architectures. Furthermore, function level evolution, either with predefined functions derived from domain-specific knowledge or with functions that are automatically defined during evolution, also gives higher accuracy. Incremental and function level evolution reduce the search space and thus shortens the training effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Higuchi, T., Iwata, M., Kajitani, I., Iba, H., Hirao, Y., Manderick, B., Furuya, T.: Evolvable Hardware and its Applications to Pattern Recognition and Fault-Tolerant Systems. In: Sanchez, E., Tomassini, M. (eds.) Towards Evolvable Hardware 1995. LNCS, vol. 1062, pp. 118–135. Springer, Heidelberg (1996)

    Google Scholar 

  2. Kajitani, I., Hoshino, T., Nishikawa, D., Yokoi, H., Nakaya, S., Yamauchi, T., Inuo, T., Kajihara, N., Iwata, M., Keymeulen, D., Higuchi, T.: A Gate-Level EHW Chip: Implementing GA Operations and Reconfigurable Hardware on a Single LSI. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 1–12. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Yasunaga, M., Nakamura, T., Yoshihara, I.: Evolvable Sonar Spectrum Discrimination Chip Designed by Genetic Algorithm. In: Systems, Man and Cybernetics, vol. 5, pp. 585–590. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  4. Yasunaga, M., Nakamura, T., Yoshihara, I., Kim, J.H.: Genetic Algorithm-based Design Methodology for Pattern Recognition Hardware. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 264–273. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Glette, K., Kaufmann, P., Gruber, T., Torresen, J., Sick, B., Platzner, M.: Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control. In: 3rd NASA/ESA Conference on Adaptive Hardware and Systems (AHS) (2008)

    Google Scholar 

  6. Kajitani, I., Hoshino, T., Iwata, M., Higuchi, T.: Variable Length Chromosome GA for Evolvable Hardware. In: International Conference on Evolutionary Computation (ICEC), pp. 443–447. IEEE, Los Alamitos (1996)

    Chapter  Google Scholar 

  7. Murakawa, M., Yoshizawa, S., Kajitani, I., Furuya, T., Iwata, M., Higuchi, T.: Hardware Evolution at Function Level. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 62–71. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  8. Kajitani, I., Sekita, I., Otsu, N., Higuchi, T.: Improvements to the Action Decision Rate for a Multi-Function Prosthetic Hand. In: Proceedings 1st International Symposium on Measurement, Analysis and Modeling of Human Functions (ISHF), pp. 84–89 (2001)

    Google Scholar 

  9. Torresen, J.: Two-Step Incremental Evolution of a Digital Logic Gate Based Prosthetic Hand Controller. In: Liu, Y., Tanaka, K., Iwata, M., Higuchi, T., Yasunaga, M. (eds.) ICES 2001. LNCS, vol. 2210, pp. 1–13. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Glette, K., Torresen, J., Yasunaga, M.: An Online EHW Pattern Recognition System Applied to Face Image Recognition. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 271–280. Springer, Heidelberg (2007)

    Google Scholar 

  11. Glette, K., Torresen, J., Yasunaga, M.: Online Evolution for a High-Speed Image Recognition System Implemented On a Virtex-II Pro FPGA. In: Proceedings 2nd NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 463–470. IEEE Computer Society Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  12. Miller, J., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Google Scholar 

  13. Walker, J.A., Miller, J.F.: Evolution and Acquisition of Modules in Cartesian Genetic Programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S.M., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 187–197. Springer, Heidelberg (2004)

    Google Scholar 

  14. Ho, T.K.: Random Decision Forests. In: Proceedings 3rd International Conference on Document Analysis and Recognition (ICDAR), vol. 1, p. 278. IEEE, Los Alamitos (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glette, K., Torresen, J., Kaufmann, P., Platzner, M. (2008). A Comparison of Evolvable Hardware Architectures for Classification Tasks. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds) Evolvable Systems: From Biology to Hardware. ICES 2008. Lecture Notes in Computer Science, vol 5216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85857-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85857-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85856-0

  • Online ISBN: 978-3-540-85857-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics