[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning General Solutions through Multiple Evaluations during Development

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5216))

Included in the following conference series:

Abstract

In this paper, we investigate whether performing multiple evaluations during development – a technique we call Evolutionary Developmental Evaluation (EDE) – could help developmental Genetic Programming (GP) evolve general solutions, solving not only the original (training) problem, but also unseen similar problems (with higher degrees of complexity). The hypothesis is tested on two families of regression problems, and the experimental results support the hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  2. Mitchell, T.M.: Machine Learning. McGraw-Hill Science Engineering (1997)

    Google Scholar 

  3. Paris, G., Robilliard, D., Fonlupt, C.: Exploring overfitting in genetic programming. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 267–277. Springer, Heidelberg (2004)

    Google Scholar 

  4. Ross, P.: Hyper-heuristics. Introductory Tutorials in Optimization and Decision Support Techniques, 529–556 (2005)

    Google Scholar 

  5. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: an emerging direction in modern search technology. In: Glover, F.W., Kochenberger, G.A. (eds.) Handbook of metaheuristics, pp. 457–474. Kluwer Academic Publishers, Dordrecht (2003)

    Chapter  Google Scholar 

  6. Zhang, J.: Evolution by gene duplication: an update. Trends in Ecology and Evolution 18, 292–298 (2003)

    Article  Google Scholar 

  7. McKay, R.I., Hoang, T.H., Essam, D.L., Nguyen, X.H.: Developmental evaluation in genetic programming: the preliminary results. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 280–289. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Hoang, T.H., Essam, D., McKay, R.I.B., Nguyen, X.H.: Solving symbolic regression problems using incremental evaluation in genetic programming. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation, Vancouver, pp. 7487–7494. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  9. Hoang, T.H., Essam, D., McKay, R., Nguyen, X.H.: Developmental evaluation in genetic programming: A tag-based framework. Genetic Programming an Emerging Engineering Tools, KES Journal 12, 1327–2314 (2008)

    Google Scholar 

  10. Hoang, T.H., Essam, D., McKay, R., Nguyen, X.H.: Building on success in genetic programming: Adaptive variation and developmental evaluation. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 137–146. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. McKay, R.I., Shin, J., Hoang, T.H., Nguyen, X.H.: Using compression to understand the distribution of building blocks in genetic programming populations. In: The Proceedings of IEEE Congress on Evolutionary Computation, pp. 2501–2508. IEEE Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  12. Rosca, J.P., Ballard, D.H.: Hierarchical self-organization in genetic programming. In: Proceedings of the Eleventh International Conference on Machine Learning. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  13. Haddow, P., Tufte, G., van Remortel, P.: Shrinking the genotype: L-systems for evolvable hardware. In Liu, Y., Tanaka, K., Iwata, M., Higuchi, T., Yasunaga, M., eds.: Evolvable Systems: From Biology to Hardware,ICES 2001. Volume 2210 of LNCS., Springer-Verlag (2001) 128–139

    Chapter  Google Scholar 

  14. Hornby, G.S., Pollack, J.B.: Evolving L-systems to generate virtual creatures. Computers and Graphics 25(6), 1041–1048 (2001)

    Article  Google Scholar 

  15. Miller, J.F., Thomson, P.: A developmental method for growing graphs and circuits. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 93–104. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Gruau, F., Whitley, D.: Adding learning to the cellular development process: a comparative study. Evolutionary Computation 1(3), 213–233 (1993)

    Article  Google Scholar 

  17. Spector, L., Stoffel, K.: Ontogenetic programming. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, July 28–31, 1996, pp. 394–399. MIT Press, Cambridge (1996)

    Google Scholar 

  18. Viswanathan, S., Pollack, J.: How artificial ontogenies can retard evolution. In: GECCO 2005: Proceedings of the 2005 workshops on Genetic and evolutionary computation, pp. 273–280. ACM, New York (2005)

    Chapter  Google Scholar 

  19. Tufte, G., Haddow, P.C.: Towards development on a silicon-based cellular computing machine. Natural Computing: an international journal 4(4), 387–416 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tufte, G., Haddow, P.: Achieving environmental tolerance through the initiation and exploitation of external information. In: IEEE Congress on Evolutionary Computation, 2007. CEC 2007, September 25-28, 2007, pp. 2485–2492. IEEE Computer Society Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  21. Sekanina, L., Bidlo, M.: Evolutionary design of arbitrarily large sorting networks using development. Genetic Programming and Evolvable Machines 6(3), 319–347 (2005)

    Article  Google Scholar 

  22. Chomsky, N.: Three models for the description of language. IRE Transactions on Information Theory 2, 113–124 (1956)

    Article  Google Scholar 

  23. Hoai, N.X., McKay, R.I.B., Essam, D.: Representation and structural difficulty in genetic programming. IEEE Transactions on Evolutionary Computation 10(2), 157–166 (2006)

    Article  Google Scholar 

  24. Joshi, A., Levy, L., Takahashi, M.: Tree adjunct grammars. J. Comput. Syst. Sci. 10, 136–163 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kushchu, I.: Genetic programming and evolutionary generalization. IEEE Transactions on Evolutionary Computation 6(5), 431–442 (2002)

    Article  Google Scholar 

  26. Terashima-Marin, H., Ross, P., Valenzuela-Rendon, M.: Evolution of constraint satisfaction strategies in examination timetabling. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 1, pp. 635–642. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  27. Hart, E., Ross, P.M., Nelson, J.: Solving a real-world problem using an evolving heuristically driven schedule builder. Evolutionary Computation 6(1), 61–80 (1998)

    Article  Google Scholar 

  28. Bleuler, S., Brack, M., Thiele, L., Zitzler, E.: Multiobjective genetic programming: Reducing bloat using SPEA2. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC 2001, Korea, pp. 536–543. IEEE Press, Los Alamitos (2001)

    Chapter  Google Scholar 

  29. Luke, S., Panait, L.: Fighting bloat with nonparametric parsimony pressure. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 411–421. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  30. Reynolds, C.W.: Evolution of corridor following behavior in a noisy world. In: Simulation of Adaptive Behaviour (SAB 1994) (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoang, TH., McKay, R.I.(., Essam, D., Nguyen, X.H. (2008). Learning General Solutions through Multiple Evaluations during Development. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds) Evolvable Systems: From Biology to Hardware. ICES 2008. Lecture Notes in Computer Science, vol 5216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85857-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85857-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85856-0

  • Online ISBN: 978-3-540-85857-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics