[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Unconstrained Evolution of Analogue Computational “QR” Circuit with Oscillating Length Representation

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5216))

Included in the following conference series:

  • 810 Accesses

Abstract

The unconstrained evolution has already been applied in the past towards the design of digital circuits, and extraordinary results have been obtained, including generation of circuits with smaller number of electronic components. In this paper unconstrained evolution, blended with oscillating length genotype sweeping strategy, is applied towards the design of "QR" analogue circuit on the example of circuit that performs the cube root function. The promising results are obtained. The new algorithm has produced the excellent result in terms of quality of the circuit evolved and evolutionary resources required. It differs from previous ones by its simplicity and represents one of the first attempts to apply Evolutionary Strategy towards the analogue circuit design. The obtained result is compared with previous designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thompson, A.: Hardware Evolution: Automatic Design of Electronic Circuits in Reconfigurable Hardware by Artificial Evolution. D.Phil. thesis, University of Sussex, Brighton, Sussex, England (1996)

    Google Scholar 

  2. Koza, J.R., Bennett III, F.H., Forrest, H., Lohn, J., Dunlap, F., Andre, D., Keane, M.A.: Automated synthesis of computational circuits using genetic programming. In: IEEE Conference on Evolutionary Computation, pp. 447–452. IEEE Press, Piscataway (1997)

    Google Scholar 

  3. Lohn, J.D., Colombano, S.P.: Automated Analog Circuit Synthesis using a Linear Representation. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 125–133. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Zebulum, R.S., Pacheco, M.A., Vellasco, M.: Comparison of different evolutionary methodologies Applied to electronic filter design. In: IEEE Conf. on Evolutionary Computation, pp. 434–439. IEEE Press, Piscataway (1998)

    Google Scholar 

  5. Goh, C., Li, Y.: GA automated design and synthesis of analog circuits with practical constraints. The Congress on Evolutionary Computation 1, 170–177 (2001)

    Google Scholar 

  6. Ando, S., Iba, H.: Analog Circuit Design with a Variable Length Chromosome. In: Congress on Evolutionary Computation, pp. 994–1000. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  7. Grimbleby, J.B.: Hybrid genetic algorithms for analogue network synthesis. In: Congress on Evolutionary Computing (CEC 1999), Washington, USA, pp. 1781–1787 (1999)

    Google Scholar 

  8. Fan, Z., Hu, J., Seo, K., Goodman, E., Rosenberg, R., Zhang, B.: Bond Graph Representation and GP for Automated Analog Filter Design. In: Goodman, E. (ed.) 2001 Genetic and Evolutionary Computation Conference Late-Breaking Papers, pp. 81–86. ISGEC Press, San Francisco (2001)

    Google Scholar 

  9. Wang, F., Li, Y., Li, L., Li, K.: Automated analog circuit design using two-layer genetic programming. Int. J. on Applied Mathematics and Computation, Special Issue on Intelligent Computing Theory and Methodology 185(2), 1087–1097 (2007)

    MATH  Google Scholar 

  10. Hu, J., Zhong, X., Goodman, E.: Open-ended robust design of analog filters using genetic programming. In: Genetic & Evolutionary Computation Conference (GECCO), pp. 1619–1626. ACM Press, New York (2005)

    Chapter  Google Scholar 

  11. Dastidar, T.R., Chakrabarti, P.P., Ray, P.: A synthesis system for analog circuits based on evolutionary search and topological reuse. IEEE Trans. on Evolutionary Computation 9(2), 211–224 (2005)

    Article  Google Scholar 

  12. Sripramong, T., Toumazou, C.: The invention of CMOS amplifiers using genetic programming and current-flow analysis. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 21(11), 1237–1252 (2002)

    Article  Google Scholar 

  13. Zebulum, R., Stoica, A., Keymeulen, D.: Experiments on the Evolution of Digital to Analog Converters. In: IEEE Aerospace Conference, Big Sky, Montana, USA Manhattan Beach, CA (2001) (published in CD) ISBN: 0-78-3-6600-X

    Google Scholar 

  14. Hu, J., Zhong, X., Goodman, E.: Open-ended Robust Design of Analog Filters Using Genetic Programming. In: Genetic & Evolutionary Computation Conference (GECCO), vol. 2, pp. 1619–1626. ACM Press, Washington (2005)

    Chapter  Google Scholar 

  15. Kuo, T., Hwang, S.-H.: Using disruptive selection to maintain diversity in genetic algorithms. Appl. Intel. 7, 257–267 (1997)

    Article  Google Scholar 

  16. Brameier, M.: On Linear Genetic Programming. PhD thesis, University of Dortmund, Dortmund, Germany (2004)

    Google Scholar 

  17. Vesselin, K., Miller, J.: The advantages of landscape neutrality in digital circuit evolution. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 252–263. Springer, Heidelberg (2000)

    Google Scholar 

  18. Thompson, A.: Artificial evolution in the physical world. In: Gomi (ed.) Evolutionary Robotics. AAI Books (1997)

    Google Scholar 

  19. Sapargaliyev, Y., Kalganova, T.G.: On Comparison of Constrained and Unconstrained Evolutions in Analogue Electronics on the Example of “LC” Low-Pass Filters. IEICE transactions on Electronics E89-C(12), 1920–1927 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sapargaliyev, Y., Kalganova, T.G. (2008). Unconstrained Evolution of Analogue Computational “QR” Circuit with Oscillating Length Representation. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds) Evolvable Systems: From Biology to Hardware. ICES 2008. Lecture Notes in Computer Science, vol 5216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85857-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85857-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85856-0

  • Online ISBN: 978-3-540-85857-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics