[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Methodological Approach for the Effective Modeling of Bayesian Networks

  • Conference paper
KI 2008: Advances in Artificial Intelligence (KI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5243))

Included in the following conference series:

Abstract

Modeling Bayesian networks manually is often a tedious task. This paper presents a methodological view onto the effective modeling of Bayesian networks. It features intuitive techniques that are especially suited for inexperienced users: We propose a process model for the modeling task, and discuss strategies for acquiring the network structure. Furthermore, we describe techniques for a simplified construction of the conditional probability tables using constraints and a novel extension of the Ranked-Nodes approach. The effectiveness and benefit of the presented approach is demonstrated by three case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Russell, S., Norvig, S.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice–Hall, Englewood Cliffs (2003)

    Google Scholar 

  2. Wrobel, S.: An Algorithm for Multi-Relational Discovery of Subgroups. In: Proc. 1st Europ. Symp. Principles of Data Mining and Knowledge Discovery, pp. 78–87. Springer, Berlin (1997)

    Google Scholar 

  3. Puppe, F.: Knowledge Reuse among Diagnostic Problem-Solving Methods in the Shell-Kit D3. Intl. Journal of Human-Computer Studies 49, 627–649 (1998)

    Article  Google Scholar 

  4. van der Gaag, L.C., Helsper, E.M.: Experiences with Modelling Issues in Building Probabilistic Networks. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 21–26. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Koller, D., Pfeffer, A.: Object–Oriented Bayesian Networks. In: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI 1997), pp. 302–313 (1997)

    Google Scholar 

  6. Neil, M., Fenton, N., Nielsen, L.: Building Large-Scale Bayesian Networks. Knowledge Engineering Review (1999)

    Google Scholar 

  7. Fenton, N., Neil, M.: Ranked Nodes: A Simple and Effective Way to Model Qualitative Judgements in Large–Scale Bayesian Nets. IEEE Transactions on Knowledge and Data Engineering (2005)

    Google Scholar 

  8. Lucas, P.: Bayesian Network Modelling through Qualitative Patterns. Artificial Intelligence 163(2), 233–263 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Helsper, E., van der Gaag, L., Groenendaal, F.: Designing a Procedure for the Acquisition of Probability Constraints for Bayesian Networks. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI), vol. 3257, pp. 280–292. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas R. Dengel Karsten Berns Thomas M. Breuel Frank Bomarius Thomas R. Roth-Berghofer

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atzmueller, M., Lemmerich, F. (2008). A Methodological Approach for the Effective Modeling of Bayesian Networks. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds) KI 2008: Advances in Artificial Intelligence. KI 2008. Lecture Notes in Computer Science(), vol 5243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85845-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85845-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85844-7

  • Online ISBN: 978-3-540-85845-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics