Abstract
In this paper we propose: (1) the use of discriminant analysis as a means for predictive learning (data-mining techniques) aiming at selecting metaheuristic algorithms and (2) the use of a metric for improving the selection of the algorithms that best solve a given instance of the Asymmetric Traveling Salesman Problem (ATSP). The only metric that had existed so far to determine the best algorithm for solving an ATSP instance is based on the number of cities; nevertheless, it is not sufficiently adequate for discriminating the best algorithm for solving an ATSP instance, thus the necessity for devising a new metric through the use of data-mining techniques.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kirkpatrick, S., Gelatt, C., Vecci, M.: Optimization by Simulated Annealing. Science 220(4598) (1983)
Rutenbar, R.: Simulated Annealing Algorithms: An Overview. IEEE Circuits and Devices Magazine 5(5), 19–26 (1989)
Kantardzic, M.: Data Mining: Concepts, Models, Methods, and Algorithms. John Wiley & Sons, Chichester (2003)
Cirasella, D.S., Cirasella, J., Johnson, D.S., McGeoch, L.A., Zhang, W.: The asymmetric traveling salesman problem: Algorithms, instance generators, and tests. In: Buchsbaum, A.L., Snoeyink, J. (eds.) ALENEX 2001. LNCS, vol. 2153, pp. 32–59. Springer, Heidelberg (2001)
Fink, E.: How to Solve it Automatically, Selection among Problem-solving Methods. In: Proceedings of the Fourth International Conference on AI Planning Systems AIPS 1998, pp. 128–136 (1998)
Soares, C., Brazdil, P.: Zoomed Ranking, Selection of Classification Algorithms Based on Relevant Performance Information. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 126–135. Springer, Heidelberg (2000)
Pérez, J., Pazos, R.A., Frausto, J., Rodriguez, G., Romero, D., Cruz, L.: A Statistical Approach for Algorithm Selection. In: Proceedings of III International Workshop on Experimental an Efficient Algorithms, Brazil. LNCS. Springer, Heidelberg (2004)
Pérez, J., Pazos, R.A., Frausto, J., Rodriguez, G., Cruz, L.: Self-Tuning Mechanism for Genetic Algorithms Parameters an Application to Data-Object Allocation in the Web. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3046. Springer, Heidelberg (2004)
Pérez, J., Pazos, R.A., Fraire, H., Cruz, L., Pecero, J.: Adaptive Allocation of Data-Objects in the Web using Neural Networks. LNCS, vol. 2829. Springer, Heidelberg (2003)
Pérez, J., Pazos, R.A., Frausto, J., Rodriguez, G., Cruz, L.: Comparison and Selection of Exact and Heuristic Algorithm. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045. Springer, Heidelberg (2004)
Pérez, J., Pazos, R.A., Fraire, H., Cruz, L., Santiago, E., García, N.E.: A Machine Learning Ap-proach for Modeling Algorithm Performance Predictors. In: Torra, V., Narukawa, Y. (eds.) MDAI 2004. LNCS (LNAI), vol. 3131. Springer, Heidelberg (2004)
Wagner, S., Affenzeller, M.: The HeuristicLab Optimization Environment. Technical Report. Institute of Formal Models and Verification. Johannes Kepler University Linz. Austria (2004)
Affenzeller, M.: New Generic Hybrids Based Upon Genetic Algorithms. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 329–339. Springer, Heidelberg (2002)
Wagner, S., Affenzeller, M.: HeuristicLab: A Generic and Extensible Optimization Environment. In: Adaptive and Natural Computing Algorithms. Springer Computer Science, pp. 538–541. Springer, Heidelberg (2005)
Wagner, S., Affenzeller, M.: HeuristicLab Grid - A Flexible and Extensible Environment for Parallel Heuristic Optimization. In: Proceedings of the 15th International Conference on Systems Science. Oficyna Wydawnicza Politechniki Wroclawskiej, vol. 1, pp. 289–296 (2004)
Affenzeller, M.: New Variants of Genetic Algorithms Applied to Problems of Combinatorial Optimization. In: Proceedings of the EMCSR 2002, vol. 1, pp. 75–80 (2002)
Reinelt, G.: TSPLIB - A Traveling Salesman Problem Library. ORSA Journal on Computing 3, 376–384 (1991)
SPSS, Inc. Headquarters, Chicago, Illinois (2008), http://www.spss.com/es/
Witten, I.H., Frank, E.: Data Mining Practical Machine Learning Tools an Techniques. Morgan Kaufmann Publishers, Elsevier (2005)
Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ruiz-Vanoye, J.A., Díaz-Parra, O., N., V.L. (2008). A Metric to Discriminate the Selection of Algorithms for the General ATSP Problem. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85563-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-85563-7_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85562-0
Online ISBN: 978-3-540-85563-7
eBook Packages: Computer ScienceComputer Science (R0)