[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improving Text Summarization Using Noun Retrieval Techniques

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5178))

Abstract

Text Summarization and categorization have always been two of the most demanding information retrieval tasks. Deploying a generalized, multi-functional mechanism that produces good results for both of the aforementioned tasks seems to be a panacea for most of the text-based, information retrieval needs. In this paper, we present the keyword extraction techniques, exploring the effects that part of speech tagging has on the summarization procedure of an existing system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bouras, C., Poulopoulos, V., Tsogkas, V.: PeRSSonal’s core functionality evaluation: Enhancing text labeling through personalized summaries. Elsevier Science Publishers B. V, vol. 64, pp. 330–345. Elsevier, Amsterdam (2008)

    Google Scholar 

  2. Wasson, M.: Using Leading Text for News Summaries: Evaluation Results and Implications for Commercial Summarization Applications. In: Proceedings of ICCL (1998)

    Google Scholar 

  3. Goldstein, J., et al.: Summarizing Text Documents: Sentence Selection and Evaluation Metrics. In: Proceedings of ACM SIGIR Conference (1999)

    Google Scholar 

  4. Ferragina, P., Gulli, A.: A Personalized Search Engine Based on Web-Snippet Hierarchical Clustering. In: Proceedings of WWW Conference (2005)

    Google Scholar 

  5. Hayes, P.J., et al.: A News Story Categorization System. In: Proceedings of the second Conference on Applied Natural Language Processing (1988)

    Google Scholar 

  6. Yang, Y., Chute, C.G.: An example-based mapping method for text categorization and retrieval. ACM Transaction on Information Systems (TOIS) 12(3), 252–277 (1994)

    Article  Google Scholar 

  7. Karlson, F., Voutilainen, A., Heikkila, J., Anttila, A.: Constraint Grammar. A Language-Independent System for Parsing Unrestricted Text. Mouton de Gruyter, Berlin (1995)

    Google Scholar 

  8. Cutting, D., Kupiec, J., Pedersen, J., Sibun, P.: A practical part-of speech tagger. In: Proceedings of the 3rd Conference on Applied Natural Processing (1992)

    Google Scholar 

  9. Roth, D., Zelenko, D.: Part-of-Speech Tagging Using a Network of Linear Seperators. In: Proceedings of the 36th Annual Meeting of the ACL – Coling, Mondreal, Canada (1998)

    Google Scholar 

  10. Gimenez, J., Marquez, L.: SVMTool: A general POS tagger generator based on Support Vector Machines. In: Proceedings of the 4th International Conference on Language Resources and Evaluation, pp. 43–46 (2004)

    Google Scholar 

  11. Bouras, C., Poulopoulos, V., Tsogkas, V.: The importance of the difference in text types to keyword extraction: Evaluating a mechanism. In: 7th International Conference on Internet Computing (ICOMP 2006), Las Vegas, Nevada, pp. 43–49 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ignac Lovrek Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bouras, C., Tsogkas, V. (2008). Improving Text Summarization Using Noun Retrieval Techniques. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85565-1_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85565-1_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85564-4

  • Online ISBN: 978-3-540-85565-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics