[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Rule-Based Assistance to Brain Tumour Diagnosis Using LR-FIR

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2008)

Abstract

This paper describes a process of rule-extraction from a multi-centre brain tumour database consisting of nuclear magnetic resonance spectroscopic signals. The expert diagnosis of human brain tumours can benefit from computer-aided assistance, which has to be readily interpretable by clinicians. Interpretation can be achieved through rule extraction, which is here performed using the LR-FIR algorithm, a method based on fuzzy logic. The experimental results of the classification of three groups of tumours indicate in this study that just three spectral frequencies, out of the 195 from a range pre-selected by experts, are enough to represent, in a simple and intuitive manner, most of the knowledge required to discriminate these groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garg, A.X., Adhikari, N.K.J., McDonald, H., Rosas-Arellano, M.P., Devereaux, P.J., Beyene, J., Sam, J., Haynes, R.B.: Effects of Computerized Clinical Decision Support Systems on Practitioner Performance and Patient Outcomes: A Systematic Review. J. Amer. Med. Assoc. 293, 1223–1238 (2005)

    Article  Google Scholar 

  2. Tung, W.L., Quek, C.: GenSo-FDSS: a Neural-Fuzzy Decision Support System for Pediatric ALL Cancer Subtype Identification Using Gene Expression Data. Artif. Intell. Med. 33, 61–88 (2005)

    Article  Google Scholar 

  3. Mitra, S.: Computational Intelligence in Bioinformatics. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 134–152. Springer, Heidelberg (2005)

    Google Scholar 

  4. Vellido, A., Lisboa, P.J.G.: Neural Networks and Other Machine Learning Methods in Cancer Research. In: Sandoval, F., Gonzalez Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 964–971. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Futschik, M.E., Reeve, A., Kasabov, N.: Evolving Connectionist Systems for Knowledge Discovery from Gene Expression Data of Cancer Tissue. Artif. Intell. Med. 28, 165–189 (2003)

    Article  Google Scholar 

  6. Chen, Z., Lia, J., Wei, L.: A Multiple Kernel Support Vector Machine Scheme for Feature Selection and Rule Extraction from Gene Expression Data of Cancer Tissue. Artif. Intell. Med. 41, 161–175 (2007)

    Article  Google Scholar 

  7. Peña-Reyes, C.A., Sipper, M.: A Fuzzy-Genetic Approach to Breast Cancer Diagnosis. Artif. Intell. Med. 17, 131–155 (1999)

    Article  Google Scholar 

  8. Takahashi, H., Masuda, K., Ando, T., Kobayashi, T., Honda, H.: Prognostic Predictor with Multiple Fuzzy Neural Models Using Expression Profiles from DNA Microarray for Metastases of Breast Cancer. J. Biosci. Bioeng. 98, 193–199 (2004)

    Google Scholar 

  9. Hassanien, A.E.: Fuzzy Rough Sets Hybrid Scheme for Breast Cancer Detection. Image Vision Comput. 25, 172–183 (2007)

    Article  Google Scholar 

  10. Artificial Intelligence Decision Tools for Tumour diagnosis (AIDTumour) research project, http://www.lsi.upc.edu/~websoco/AIDTumour

  11. Julià-Sapé, M., et al.: A Multi-Centre, Web-Accessible and Quality Control-Checked Database of in Vivo MR Spectra of Brain Tumour Patients. Magn. Reson. Mater. Phy. MAGMA 19, 22–33 (2006)

    Article  Google Scholar 

  12. Castro, F., Nebot, A.: Un Algoritmo para la Extracción Automática de Reglas Lógicas a partir de Modelos FIR. Technical Report, Universitat Politècnica de Catalunya LSI-07-7-R (2007)

    Google Scholar 

  13. Nebot, A., Cellier, F.E., Vallverdú, M.: Mixed Quantitative:Qualitative Modeling and Simulation of the Cardiovascular System. Comput. Meth. Prog. Bio. 55, 127–155 (1998)

    Article  Google Scholar 

  14. Escobet, A., Nebot, A., Cellier, F.E.: Visual-FIR: A Tool for Model Identification and Prediction of Dynamical Complex Systems. Simul. Model. Pract. Th. 16, 76–92 (2008)

    Article  Google Scholar 

  15. Vellido, A., Biganzoli, E., Lisboa, P.J.G.: Machine Learning in Cancer Research: Implications for Personalised Medicine. In: 16th European Symposium on Artificial Neural Networks (ESANN 2008). d-Side pub, Evere, Belgium (2008) (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ignac Lovrek Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nebot, À., Castro, F., Vellido, A., Julià-Sapé, M., Arús, C. (2008). Rule-Based Assistance to Brain Tumour Diagnosis Using LR-FIR. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85565-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85565-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85564-4

  • Online ISBN: 978-3-540-85565-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics