[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Efficient Tracking with AdaBoost and Particle Filter under Complicated Background

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2008)

Abstract

Particle filter, which is the probability technique, can be used for the robust tracking to the noise and the occlusion. However, when many objects are tracked simultaneously, the real-time tracking becomes difficult as the computational cost increases. While, the AdaBoost has an ability that it has the remarkable efficiency as a statistical technique in pattern recognition. AdaBoost can be used to detect an object region for the efficient tracking with a particle filter. However, it is difficult to detect the moving object under the complicated background by AdaBoost. This paper proposes an improvement of efficiency of particle filter by introducing further distinction features using AdaBoost for the complicated background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Isard, M., Blake, A.: CONDENSATION - conditional density propagation for visual tracking. Intl. J. of Computer Vision 29(1), 5–28 (1998)

    Article  Google Scholar 

  2. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10(3), 197–208 (2000)

    Article  Google Scholar 

  3. Liu, J.S., Chen, R.: Sequential Monte Carlo Methods for Dynamic Systems. Journal of the American Statistical Association 93(443), 1032–1044 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an aplication to boosting. J. of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. of CVPR, vol. 1, pp. 511–518 (2001)

    Google Scholar 

  6. Huang, C., Wu, B., Ai, H., Lao, S.: Omni-directional face detection based on real AdaBoost. In: ICIP, vol. 1, pp. 24–27 (2004)

    Google Scholar 

  7. Iwahori, Y., Kawanaka, H., Takai, T., Adachi, Y., Itoh, H.: Particle Filter Based Tracking of Moving Object from Image Sequence. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4252, pp. 401–408. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Kawanaka, H., Fujiyoshi, H., Iwahori, Y.: Human Head Tracking in Three Dimensional Voxel Space. Proceedings of ICPR 3, 826–829 (2006)

    Google Scholar 

  9. Swain, M.J., Ballard, D.H.: Color Indexing. Intl. J. Computer Vision 7(1), 11–32 (1991)

    Article  Google Scholar 

  10. Kawanaka, H., Ohnishi, K., Iwahori, Y., Fukui, S.: Efficiency of Particle Filter Using Adaboost, Symposium of Meeting on Image Recongition and Understanding. In: Proceedings of MIRU 2006, pp. IS1–5 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ignac Lovrek Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iwahori, Y., Enda, N., Fukui, S., Kawanaka, H., Woodham, R.J., Adachi, Y. (2008). Efficient Tracking with AdaBoost and Particle Filter under Complicated Background. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85565-1_110

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85565-1_110

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85564-4

  • Online ISBN: 978-3-540-85565-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics