[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Euclidean Sections of \(\ell_1^N\) with Sublinear Randomness and Error-Correction over the Reals

  • Conference paper
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques (APPROX 2008, RANDOM 2008)

Abstract

It is well-known that \(\mathbb R^N\) has subspaces of dimension proportional to N on which the ℓ1 and ℓ2 norms are uniformly equivalent, but it is unknown how to construct them explicitly. We show that, for any δ> 0, such a subspace can be generated using only N δ random bits. This improves over previous constructions of Artstein-Avidan and Milman, and of Lovett and Sodin, which require O(N logN), and O(N) random bits, respectively.

Such subspaces are known to also yield error-correcting codes over the reals and compressed sensing matrices. Our subspaces are defined by the kernel of a relatively sparse matrix (with at most N δ non-zero entries per row), and thus enable compressed sensing in near-linear O(N 1 + δ) time.

As in the work of Guruswami, Lee, and Razborov, our construction is the continuous analog of a Tanner code, and makes use of expander graphs to impose a collection of local linear constraints on vectors in the subspace. Our analysis is able to achieve uniform equivalence of the ℓ1 and ℓ2 norms (independent of the dimension). It has parallels to iterative decoding of Tanner codes, and leads to an analogous near-linear time algorithm for error-correction over reals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Artstein-Avidan, S., Milman, V.D.: Logarithmic reduction of the level of randomness in some probabilistic geometric constructions. J. Funct. Anal. 235(1), 297–329 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N.: Personal communication (2008)

    Google Scholar 

  3. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  Google Scholar 

  4. Donoho, D.L.: Compressed sensing. IEEE Transactions on Information Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  5. Figiel, T., Lindenstrauss, J., Milman, V.D.: The dimension of almost spherical sections of convex bodies. Acta Math. 139(1-2), 53–94 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  6. Garnaev, A., Gluskin, E.D.: The widths of Euclidean balls. Doklady An. SSSR. 277, 1048–1052 (1984)

    MathSciNet  Google Scholar 

  7. Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with near-optimal rate. IEEE Trans. Inform. Theory 51(10), 3393–3400 (2005)

    Article  MathSciNet  Google Scholar 

  8. Guruswami, V., Lee, J.R., Razborov, A.: Almost Euclidean subspaces of \(\ell_1^{N}\) via expander codes. In: SODA 2008: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics, pp. 353–362 (2008)

    Google Scholar 

  9. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.) 43(4), 439–561 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Indyk, P.: Stable distributions, pseudorandom generators, embeddings, and data stream computation. Journal of the ACM 53(3), 307–323 (2006)

    Article  MathSciNet  Google Scholar 

  11. Indyk, P.: Uncertainty principles, extractors, and explicit embeddings of L 2 into L 1. In: Proceedings of the 39th Annual ACM Symposium on the Theory of Computing, pp. 615–620 (2007)

    Google Scholar 

  12. Johnson, W.B., Schechtman, G.: Finite dimensional subspaces of \(L\sb p\). In: Handbook of the geometry of Banach spaces, vol. I, pp. 837–870. North-Holland, Amsterdam (2001)

    Chapter  Google Scholar 

  13. Kashin, B.S.: The widths of certain finite-dimensional sets and classes of smooth functions. Izv. Akad. Nauk SSSR Ser. Mat. 41(2), 334–351, 478 (1977)

    MATH  MathSciNet  Google Scholar 

  14. Kashin, B.S., Temlyakov, V.N.: A remark on compressed sensing (2007), http://www.dsp.ece.rice.edu/cs/KT2007.pdf

    Google Scholar 

  15. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lovett, S., Sodin, S.: Almost Euclidean sections of the N-dimensional cross-polytope using O(N) random bits. Electronic Colloquium on Computational Complexity, Report TR07-012 (2007)

    Google Scholar 

  17. Milman, V.: Topics in asymptotic geometric analysis. Geom. Funct. Anal., 792–815 (2000) (Special Volume, Part II); GAFA 2000 (Tel Aviv, 1999)

    Google Scholar 

  18. Schütt, C.: Entropy numbers of diagonal operators between symmetric Banach spaces. J. Approx. Theory 40(2), 121–128 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sipser, M., Spielman, D.A.: Expander codes. IEEE Trans. Inform. Theory 42(6, part 1), 1710–1722 (1996) (Codes and complexity)

    Article  MATH  MathSciNet  Google Scholar 

  20. Szarek, S.: Convexity, complexity, and high dimensions. In: International Congress of Mathematicians, vol. II, pp. 1599–1621. Eur. Math. Soc., Zürich (2006)

    Google Scholar 

  21. Tanner, R.M.: A recursive approach to low complexity codes. IEEE Transactions on Information Theory 27(5), 533–547 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Xu, W., Hassibi, B.: Efficient compressive sensing with determinstic guarantees using expander graphs. In: IEEE Information Theory Workshop (September 2007)

    Google Scholar 

  23. Zémor, G.: On expander codes. IEEE Transactions on Information Theory 47(2), 835–837 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guruswami, V., Lee, J.R., Wigderson, A. (2008). Euclidean Sections of \(\ell_1^N\) with Sublinear Randomness and Error-Correction over the Reals. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics