[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Simple LP Relaxation for the Asymmetric Traveling Salesman Problem

  • Conference paper
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques (APPROX 2008, RANDOM 2008)

Abstract

A long-standing conjecture in Combinatorial Optimization is that the integrality gap of the Held-Karp LP relaxation for the Asymmetric Traveling Salesman Problem (ATSP) is a constant. In this paper, we give a simpler LP relaxation for the ASTP. The integrality gaps of this relaxation and of the Held-Karp relaxation are within a constant factor of each other. Our LP is simpler in the sense that its extreme solutions have at most 2n − 2 non-zero variables, improving the bound 3n − 2 proved by Vempala and Yannakakis for the extreme solutions of the Held-Karp LP relaxation. Moreover, more than half of these non-zero variables can be rounded to integers while the total cost only increases by a constant factor.

We also show that given a partially rounded solution, in an extreme solution of the corresponding LP relaxation, at least one positive variable is greater or equal to 1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bansal, N., Khandekar, R., Nagarajan, V.: Additive Guarantees for Degree Bounded Directed Network Design. In: STOC 2008 (2008)

    Google Scholar 

  2. Bläser, M.: A new Approximation Algorithm for the Asymmetric TSP with Triangle Inequality. In: SODA 2002, pp. 638–645 (2002)

    Google Scholar 

  3. Charikar, M., Goemans, M.X., Karloff, H.J.: On the Integrality Ratio for Asymmetric TSP. In: FOCS 2004, pp. 101–107 (2004)

    Google Scholar 

  4. Carr, R., Vempala, S.: On the Held-Karp relaxation for the asymmetric and symmetric TSPs. Mathematical Programming 100(3), 569–587 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Frank, A.: Personal communication

    Google Scholar 

  6. Frieze, A., Galbiati, G., Maffioli, M.: On the worst-case performance of some algorithms for the asymmetric traveling salesman problem. Networks 12 (1982)

    Google Scholar 

  7. Goemans, M.X.: Minimum Bounded Degree Spanning Trees. In: FOCS 2006, pp. 273–282 (2006)

    Google Scholar 

  8. Gutin, G., Punnen, A.P. (eds.): Traveling Salesman Problem and Its Variations. Springer, Berlin (2002)

    MATH  Google Scholar 

  9. Held, M., Karp, R.M.: The traveling salesman problem and minimum spanning trees. Operation Research 18, 1138–1162 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hoffman, A.J.: Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. In: Proc. Symp. in Applied Mathematics, Amer. Math. Soc., pp. 113–127 (1960)

    Google Scholar 

  11. Jain, K.: A factor 2 approximation for the generalized Steiner network problem. Combinatorica 21, 39–60 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kaplan, H., Lewenstein, M., Shafir, N., Sviridenko, M.: Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multidigraphs. In: Proc. of IEEE FOCS, pp. 56–67 (2003)

    Google Scholar 

  13. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  14. Lau, L.C., Naor, J., Salavatipour, M.R., Singh, M.: Survivable network design with degree or order constraints. In: STOC 2007, pp. 651–660 (2007)

    Google Scholar 

  15. Lau, L.C., Singh, M.: Approximating minimum bounded degree spanning trees to within one of optimal. In: STOC 2007, pp. 661–670 (2007)

    Google Scholar 

  16. Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D. (eds.): The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons Ltd., Chichester (1985)

    MATH  Google Scholar 

  17. Vempala, S., Yannakakis, M.: A Convex Relaxation for the Asymmetric TSP. In: SODA 1999, pp. 975–976 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, T. (2008). A Simple LP Relaxation for the Asymmetric Traveling Salesman Problem. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics