Abstract
Complex matter may lie in various forms from granular matter, soft matter, fluid-fluid or solid-fluid mixtures to compact heterogeneous material. Cellular automata models make a suitable and powerful tool to catch the influence of the microscopic scale onto the macroscopic behaviour of these complex systems. Rather than a survey, this paper will attempt to bring out the main concepts underlying these models and to give an insight for future work.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983)
Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Physica 10 D, 117–127 (1984)
Désérable, D.: Cellular automata for granular matter: what trends? In: Bainov, D., Nenov, S. (eds.) Second Int. Conf. on Applied Math. SICAM 2005, Plovdiv, p. 64 (2005)
Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364–374 (1988)
Kadanoff, L.P., Nagel, S.R., Wu, L., Zhou, S.M.: Scaling and universality in avalanches. Phys. Rev. A 39, 6524–6537 (1989)
Makse, H.A., Herrmann, H.J.: Microscopic model for granular stratification and segregation. Europhys. Lett. 43, 1–6 (1998)
Cizeau, P., Makse, H.A., Stanley, H.E.: Mechanisms of granular spontaneous stratification and segregation in two-dimensional silos. Phys. Rev. E 59, 4408–4421 (1999)
Makse, H.A.: Grain segregation mechanism in aeolian sand ripples. Eur. Phys. J. E 1, 127–135 (2000)
Caps, H., Vandewalle, N.: Ripple and kink dynamics. Phys. Rev. E 64(041302), 1–6 (2001)
Bak, P., Tang, C.: Earthquakes as a self-organized critical phenomena. J. Geophys. Res. 94(B11), 15635–15637 (1989)
Weatherley, D., Mora, P., Xia, M.: Long-range automaton models of earthquakes: power-law accelerations, correlation evolution, and mode-switching. Pure and Applied Geophys. 159(10), 2469–2490 (2002)
Iovine, G., Di Gregorio, S., Lupiano, V.: Debris-flow susceptibility assessment through cellular automata modelling: an example from 15–16 December 1999 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy). Natural Hazards Earth Syst. Sc. 3, 457–468 (2003)
Kronholm, K., Birkeland, K.W.: Integrating spatial patterns into a snow avalanche cellular automata model. Geophys. Res. Lett. 32(19), L19504 (2005)
Wolf-Gladrow, D.A.: Lattice-gas cellular automata and lattice Boltzmann models. Springer, Heidelberg (2000)
Boghosian, B.M.: Lattice gases and cellular automata. Fut. Gen. Comp. Sys. 16, 171–185 (1999)
Chopard, B., Dupuis, A., Masselot, A., Luthi, P.: Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems. Advances in Complex Systems 5(2-3), 103–246 (2002)
Frisch, U., d’Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y., Rivet, J.P.: Lattice-gas hydrodynamics in two and three dimensions. Complex Systems 1, 649–707 (1987)
Rothman, D.H., Keller, J.M.: Immiscible cellular-automaton fluids. J. Stat. Phys. 52, 1119–1127 (1988)
Stockman, H.W, Li, Ch., Wilson, J.L.: A lattice-gas and lattice Boltzmann study of mixing at continuous fracture junctions: importance of boundary conditions. Geophys. Res. Lett. 24(12), 1515–1518 (1997)
McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61(20), 2332–2335 (1988)
Higuera, F.J., Succi, S., Benzi, R.: Lattice-gas dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989)
Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 6546–6562 (2000)
Chen, S., Doolen, G.D.: Lattice-Boltzmann method for fluid flow. Ann. Rev. Fluid Mech. 30, 329–364 (1998)
Flekkøy, E.G., Herrmann, H.J.: Lattice Boltzmann models for complex fluids. Physica A 199, 1–11 (1993)
Ladd, A.J.C., Verberg, R.: Lattice Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104(5), 1191–1251 (2001)
Chen, H., Succi, S., Orszag, S.: Analysis of subgrid scale turbulence using the Boltzmann Bhatnagar-Gross-Krook kinetic equation. Phys. Rev. E 59, R2527–2530 (1999)
Xu, K., Prendergast, K.H.: Numerical Navier-Stokes solutions from gas kinetic theory. J. Comp. Phys. 114, 9–17 (1993)
Talia, D., Sloot, P. (eds.): Cellular automata: promise and prospects in computational science. Special issue of Fut. Gen. Comp. Sys. 16, 157–305 (1999)
Litwiniszyn, J.: Application of the equation of stochastic processes to mechanics of loose bodies. Archivuum Mechaniki Stosowanej 8(4), 393–411 (1956)
Müllins, W.W.: Stochastic theory of particle flow under gravity. J. Appl. Phys. 43, 665–678 (1972)
Baxter, G.W., Behringer, R.P.: Cellular automata models of granular flow. Phys. Rev. A 42, 1017–1020 (1990)
Désérable, D.: A versatile two-dimensional cellular automata network for granular flow. SIAM J. Applied Math. 62(4), 1414–1436 (2002)
Peng, G., Herrmann, H.J.: Density waves of granular flow in a pipe using lattice-gas automata. Phys. Rev. E 49, R1796–1799 (1994)
Károlyi, A., Kertész, J., Havlin, S., Makse, H.A., Stanley, H.E.: Filling a silo with a mixture of grains: friction-induced segregation. Europhys. Lett. 44(3), 386–392 (1998)
Coppersmith, S.N., Liu, C.H., Majumdar, S., Narayan, O., Witten, T.A.: Model for force fluctuations in bead packs. Phys. Rev. E 53, 4673–4685 (1996)
Hemmingsson, J., Herrmann, H.J., Roux, S.: Vectorial cellular automaton for the stress in granular media. J. Phys. I 45, 853–872 (1997)
Masson, S., Désérable, D., Martinez, J.: Modélisation de matériaux granulaires par automate cellulaire. Revue Française de Génie Civil 5(5), 629–650 (2001)
Wolf, D.E., Schreckenberg, M., Bachem, A. (eds.): Traffic and Granular Flow’95, Jülich. World Scientific Publishing, Singapore (1996)
Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds.): Traffic and Granular Flow’05. Springer, Heidelberg (2007)
Nagel, K.: Particle hopping models and traffic flow theory. Phys. Rev. E 53, 4655–4672 (1996)
Nagatani, T.: The physics of traffic jams. Rep. Prog. Phys 65, 1331–1386 (2002)
Boon, J.-P., Dab, D., Kapral, R., Lawniczak, A.: Lattice gas automata for reactive systems. Phys. Rep. 273, 55–148 (1996)
Bandman, O.L.: Cellular-neural automaton: a hybrid model for reaction-diffusion simulation. Fut. Gen. Comp. Sys. 18(6), 737–745 (2002)
Pudov, S.: First order 2d cellular neural networks investigation and learning. In: Malyshkin, V. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 94–97. Springer, Heidelberg (2001)
Malinetski, G.G., Stepantsov, M.E.: Modelling diffusive processes by cellular automata with Margolus neighborhood. Zh. Vych. Mat.Mat. Phys. 36(6), 1017–1021 (1998)
Haecker, C.J., Bentz, D.P., Feng, X.P., Stutzman, P.E.: Prediction of cement physical properties by virtual testing. Cement International 1(3), 86–92 (2003)
Bentz, D.P., Garboczi, E.J.: Modelling the leaching of calcium hydroxide from cement paste: effects on pore space percolation and diffusivity. J. Mat. Struct. 25(9), 523–533 (1992)
Kamali, S., Moranville, M., Garboczi, E., Prené, S., Gérard, B.: Hydrate dissolution influence on the Young’s modulus of cement pastes. In: FraMCos 2004, Vail, Colorado, pp. 631–638 (2004)
Bernard, F., Kamali-Bernard, S., Prince, W., Hjaj, M.: 3D multi-scale modeling of mortar mechanical behavior and effect of changes in the microstructure. In: FraMCos 2007, Catania, Italy (in press)
Psakhie, S.G., Horie, Y., Ostermeyer, G.P., Korostelev, S.Y., Smolin, A.Y., Shilko, E.V., Dmitriev, A.I., Blatnik, S., Spegel, M., Zavsek, S.: Movable cellular automata method for simulating materials with mesostructure. Theor. Appl. Fract. Mech. 37, 311–334 (2001)
Popov, V.L., Filippov, A.E.: Method of movable lattice particles. Tribol. Int. 40(6), 930–936 (2007)
Popov, V.L., Psakhie, S.G.: Theoretical principles of modelling elastoplastic media by movable cellular automata method. I. Homogeneous media. Phys. Mesomech. 4(1), 15–25 (2001)
Dmitriev, A.I., Popov, V.L., Psakhie, S.G.: Simulation of surface topography with the method of movable cellular automata. Tribol. Int. 39(5), 444–449 (2006)
Mazoyer, J.: An overview of the firing squad synchronization problem. In: Choffrut, C. (ed.) Automata Networks. LNCS, vol. 316, pp. 82–94. Springer, Heidelberg (1988)
Kadanoff, L.P.: Scaling laws for Ising models near T c . Physics 2(6), 263–272 (1966)
Désérable, D.: A framework for scaling and renormalization in the triangular lattice. In: Fourteenth Int. Symp. on Math. Theory of Networks & Systems MTNS 2000, Perpignan, p. 109 (2000)
Toffoli, T.: Programmable matter methods. Fut. Gen. Comp. Sys. 16, 187–201 (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Désérable, D., Dupont, P., Hellou, M., Kamali-Bernard, S. (2007). Cellular Automata Models for Complex Matter. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2007. Lecture Notes in Computer Science, vol 4671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73940-1_39
Download citation
DOI: https://doi.org/10.1007/978-3-540-73940-1_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73939-5
Online ISBN: 978-3-540-73940-1
eBook Packages: Computer ScienceComputer Science (R0)