[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Discrete Harmonic Functions from Local Coordinates

  • Conference paper
Mathematics of Surfaces XII (Mathematics of Surfaces 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4647))

Included in the following conference series:

  • 1266 Accesses

Abstract

In this work we focus on approximations of continuous harmonic functions by discrete harmonic functions based on the discrete Laplacian in a triangulation of a point set. We show how the choice of edge weights based on generalized barycentric coordinates influences the approximation quality of discrete harmonic functions. Furthermore, we consider a varying point set to demonstrate that generalized barycentric coordinates based on natural neighbors admit discrete harmonic functions that continuously depend on the point set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, 2nd edn. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  2. Benjamini, I., Lovász, L.: Harmonic and analytic functions on graphs. J. of Geometry 76, 3–15 (2003)

    Article  MATH  Google Scholar 

  3. Hjelle, Ø., Dæhlen, M.: Triangulations and Applications. In: Mathematics and Visualization, Springer, Heidelberg (2006)

    Google Scholar 

  4. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. Computer Graphics (Annual Conference Series) 29, 173–182 (1995)

    Google Scholar 

  5. Iserles, A.: A First Course in Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  6. Warren, J., Schaefer, S., Hirani, A.N., Desbrun, M.: Barycentric coordinates for convex sets. Advances in Computational Mathematics (to appear)

    Google Scholar 

  7. Hormann, K.: Barycentric coordinates for arbitrary polygons in the plane. Technical Report IfI-05-05, Department of Informatics, Clausthal University of Technology (February 2005)

    Google Scholar 

  8. Bobach, T., Umlauf, G.: Natural neighbor interpolation and order of continuity. In: GI Lecture Notes in Informatics: Visualization of Large and Unstructured Data Sets, pp. 69–86. Springer, Heidelberg (2006)

    Google Scholar 

  9. Christ, N.H., Friedberg, R., Lee, T.D.: Weights of links and plaquettes in a random lattice. Nuclear Physics B 210(3), 337–346 (1982)

    Article  MathSciNet  Google Scholar 

  10. Belikov, V., Ivanov, V., Kontorovich, V., Korytnik, S., Semenov, A.: The non-Sibsonian interpolation: A new method of interpolation of the values of a function on an arbitrary set of points. Comp. Mathematics and Mathematical Physics 37(1), 9–15 (1997)

    MathSciNet  Google Scholar 

  11. Sugihara, K.: Surface interpolation based on new local coordinates. Computer Aided Design 13(1), 51–58 (1999)

    Article  MathSciNet  Google Scholar 

  12. Sibson, R.: A vector identity for the Dirichlet tessellation. Math. Proc. of Cambridge Philosophical Society 87, 151–155 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hiyoshi, H., Sugihara, K.: Voronoi-based interpolation with higher continuity. In: Symposium on Comp. Geom., pp. 242–250 (2000)

    Google Scholar 

  14. Lovász, L.: Discrete analytic functions: a survey. Technical report, Microsoft Research (2000)

    Google Scholar 

  15. Varga, R.S.: Matrix Iterative Analysis. PrenticeHall, Englewood Cliffs, NJ, USA (1962)

    Google Scholar 

  16. Wachspress, E.: A rational finite element basis. Academic Press, San Diegoss (1975)

    MATH  Google Scholar 

  17. Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ju, T., Liepa, P., Warren, J.: A general geometric construction of coordinates in a convex simplicial polytope. Computer Aided Geometric Design 24, 161–178 (2007)

    Article  MathSciNet  Google Scholar 

  19. Flötotto, J.: A coordinate system associated to a point cloud issued from a manifold: definition, properties and applications. PhD thesis, Université de Nice-Sophia Antipolis (September 2003), http://www.inria.fr/rrrt/tu-0805.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ralph Martin Malcolm Sabin Joab Winkler

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bobach, T., Farin, G., Hansford, D., Umlauf, G. (2007). Discrete Harmonic Functions from Local Coordinates. In: Martin, R., Sabin, M., Winkler, J. (eds) Mathematics of Surfaces XII. Mathematics of Surfaces 2007. Lecture Notes in Computer Science, vol 4647. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73843-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73843-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73842-8

  • Online ISBN: 978-3-540-73843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics