Abstract
An interactive technique for integrating surface inspection with fairing is proposed and demonstrated for quadrilateral meshes. This technique works by creating discrete curvature tensors for each mesh point, interpolating this data to create a finer mesh for inspection, allowing the user to change any curvature information and then regenerating the mesh using the new information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Farin, G.: Curves and Surfaces for CAGD—A Practical Guide, 5th edn. Academic Press, San Diego (2002)
Renz, W.: Interactive Smoothing of Digitized Point Data. Computer-Aided Design 14, 267–269 (1982)
Miao, Y., Shou, H., Feng, J., Peng, Q., Forrest, A.R.: Bézier Surfaces of Minimal Internal Energy. The Mathematics of Surfaces XI, pp. 161–183 (2005)
Peters, J.: Smoothness, Fairness and the Need for Better Multi-sided Patches. Contemporary Mathematics 334, 55–64 (2003)
Clarenc, U., Diewald, U., Rumpf, M.: Anisotropic Geometric Diffusion in Surface Processing. In: Proc. Visualisation 2000, pp. 397–405 (2000)
Farin, G., Sapidis, N.: Fairing Curves. IEEE Computer Graphics & Applications 9, 52–57 (1989)
Mullineux, G., Robinson, S.T.: Fairing Point Sets using Curvature. Computer-Aided Design 39, 27–34 (2007)
Albat, F., Muller, R.: Free-form Surface Construction in a Commercial CAD/CAM System. In: The Mathematics of Surfaces X, pp. 1–13. Springer, Heidelberg (2005)
Prieto, P.A., Wright, D.K.: A Novel Method for Early Formal Developments using Computer Aided Design and Rapid Prototyping Technology. In: Proc. Instn. Mech. Engrs. Part B: Journal of Engineering Manufacture, 217, 695–698 (2003)
Bloor, M.I.G., Wilson, M.J., Hagen, H.: The Smoothing Properties of Variational Schemes for Surface Design. Computer Aided Geometric Design 12, 381–394 (1995)
Goodman, T., Martin, R.R. (eds.): Estimation of curvatures from point data. The Mathematics of Surfaces VII, Information Geometers, pp. 131–144 (1997)
Pressley, A.: Elementary Differential Geometry. Springer, London (2001)
Röschel, O.: Rational motion design - a survey. Computer-Aided Design 30, 169–178 (1998)
Shoemake, K.: Animating rotation with quaternion curves. In: Proc. 12th Annual Conference on Computer Graphics and Interactive Techniques, pp. 245–254 (1985)
Anon.: FSSBROCH bulbous bowed ship (last amended 1996) (last accessed January 2007), [online] Available from http://www.dataship.com/vmrl/fssbroch_2.wrl
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Robinson, S.T., Mullineux, G. (2007). Curvature-Based Surface Regeneration. In: Martin, R., Sabin, M., Winkler, J. (eds) Mathematics of Surfaces XII. Mathematics of Surfaces 2007. Lecture Notes in Computer Science, vol 4647. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73843-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-540-73843-5_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73842-8
Online ISBN: 978-3-540-73843-5
eBook Packages: Computer ScienceComputer Science (R0)