[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Curvature-Based Surface Regeneration

  • Conference paper
Mathematics of Surfaces XII (Mathematics of Surfaces 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4647))

Included in the following conference series:

  • 1225 Accesses

Abstract

An interactive technique for integrating surface inspection with fairing is proposed and demonstrated for quadrilateral meshes. This technique works by creating discrete curvature tensors for each mesh point, interpolating this data to create a finer mesh for inspection, allowing the user to change any curvature information and then regenerating the mesh using the new information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Farin, G.: Curves and Surfaces for CAGD—A Practical Guide, 5th edn. Academic Press, San Diego (2002)

    Google Scholar 

  2. Renz, W.: Interactive Smoothing of Digitized Point Data. Computer-Aided Design 14, 267–269 (1982)

    Article  Google Scholar 

  3. Miao, Y., Shou, H., Feng, J., Peng, Q., Forrest, A.R.: Bézier Surfaces of Minimal Internal Energy. The Mathematics of Surfaces XI, pp. 161–183 (2005)

    Google Scholar 

  4. Peters, J.: Smoothness, Fairness and the Need for Better Multi-sided Patches. Contemporary Mathematics 334, 55–64 (2003)

    Google Scholar 

  5. Clarenc, U., Diewald, U., Rumpf, M.: Anisotropic Geometric Diffusion in Surface Processing. In: Proc. Visualisation 2000, pp. 397–405 (2000)

    Google Scholar 

  6. Farin, G., Sapidis, N.: Fairing Curves. IEEE Computer Graphics & Applications 9, 52–57 (1989)

    Article  Google Scholar 

  7. Mullineux, G., Robinson, S.T.: Fairing Point Sets using Curvature. Computer-Aided Design 39, 27–34 (2007)

    Article  Google Scholar 

  8. Albat, F., Muller, R.: Free-form Surface Construction in a Commercial CAD/CAM System. In: The Mathematics of Surfaces X, pp. 1–13. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Prieto, P.A., Wright, D.K.: A Novel Method for Early Formal Developments using Computer Aided Design and Rapid Prototyping Technology. In: Proc. Instn. Mech. Engrs. Part B: Journal of Engineering Manufacture, 217, 695–698 (2003)

    Google Scholar 

  10. Bloor, M.I.G., Wilson, M.J., Hagen, H.: The Smoothing Properties of Variational Schemes for Surface Design. Computer Aided Geometric Design 12, 381–394 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goodman, T., Martin, R.R. (eds.): Estimation of curvatures from point data. The Mathematics of Surfaces VII, Information Geometers, pp. 131–144 (1997)

    Google Scholar 

  12. Pressley, A.: Elementary Differential Geometry. Springer, London (2001)

    MATH  Google Scholar 

  13. Röschel, O.: Rational motion design - a survey. Computer-Aided Design 30, 169–178 (1998)

    Article  MATH  Google Scholar 

  14. Shoemake, K.: Animating rotation with quaternion curves. In: Proc. 12th Annual Conference on Computer Graphics and Interactive Techniques, pp. 245–254 (1985)

    Google Scholar 

  15. Anon.: FSSBROCH bulbous bowed ship (last amended 1996) (last accessed January 2007), [online] Available from http://www.dataship.com/vmrl/fssbroch_2.wrl

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ralph Martin Malcolm Sabin Joab Winkler

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robinson, S.T., Mullineux, G. (2007). Curvature-Based Surface Regeneration. In: Martin, R., Sabin, M., Winkler, J. (eds) Mathematics of Surfaces XII. Mathematics of Surfaces 2007. Lecture Notes in Computer Science, vol 4647. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73843-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73843-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73842-8

  • Online ISBN: 978-3-540-73843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics