[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 220))

Abstract

The construction of fuzzy strict preference, indifference and incomparability relations from a fuzzy large preference relation is usually cast into an axiomatic framework based on t-norms. In this contribution, we show that this construction is essentially characterized by the choice of an indifference generator, a symmetrical mapping located between the L ukasiewicz t-norm and the minimum operator. Interesting constructions are obtained by choosing as indifference generator a commutative quasi-copula, an ordinal sum of Frank t-norms or a particular Frank t-norm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. De Baets, Local and global characteristic behaviour of additive fuzzy preference structures, Abstr. Nineteenth Linz Seminar on Fuzzy Set Theory (Linz, Austria), 1998, pp. 22–28.

    Google Scholar 

  2. B. De Baets and H. De Meyer, On the equiponderate equation x a+x b+x=x c+x d+1 and a representation of weight quadruplets, J. Appl. Math. Decis. Sci. 2 (1998), 147–158.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. De Baets and J. Fodor, Twenty years of fuzzy preference structures (1978–1997), Riv. Mat. Sci. Econom. Social. 20 (1997), 45–66.

    MATH  MathSciNet  Google Scholar 

  4. B. De Baets and B. Van De Walle, Minimal definitions of classical and fuzzy preference structures, Proc Annual Meeting of the North American Fuzzy Information Processing Society (Syracuse, New York, USA), 1997, pp. 299–304.

    Google Scholar 

  5. J. Fodor and M. Roubens, Valued preference structures, European J. Oper. Res. 79 (1994), 277–286.

    Article  MATH  Google Scholar 

  6. J. Fodor and M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer Academic Publishers, Dordrecht, 1994.

    MATH  Google Scholar 

  7. C. Genest, J. Molina, J. Lallena and C. Sempi, A characterization of quasi-copulas, J. Multivariate Analysis 69 (1999), 193–205.

    Article  MATH  Google Scholar 

  8. E.-P. Klement, R. Mesiar and E. Pap, Triangular norms, Kluwer Academic Publishers, 2000.

    Google Scholar 

  9. A. Kolesárová and J. Mordelová, 1-Lipschitz and kernel aggregation operators, Proc. Internat. Summer School on Aggregation Operators and their Applications (Oviedo, Spain), 2001, pp. 71–75.

    Google Scholar 

  10. R. Nelsen, An Introduction to Copulas, Lecture Notes in Statistics, Vol. 139, Springer-Verlag, New York, 1998.

    Google Scholar 

  11. M. Roubens and Ph. Vincke, Preference modeling, Lecture Notes in Economics and Mathematical Systems 250, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  12. B. Van de Walle, B. De Baets and E. Kerre, Characterizable fuzzy preference structures, Annals of Operations Research, Special Issue “Preference modelling” (D. Bouyssou and Ph. Vincke, eds.), 80 (1998), 105–136.

    Google Scholar 

  13. L. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fodor, J., Baets, B.d. (2008). Fuzzy Preference Modelling: Fundamentals and Recent Advances. In: Bustince, H., Herrera, F., Montero, J. (eds) Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. Studies in Fuzziness and Soft Computing, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73723-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73723-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73722-3

  • Online ISBN: 978-3-540-73723-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics