[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Handling Polymorphism in Automated Deduction

  • Conference paper
Automated Deduction – CADE-21 (CADE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4603))

Included in the following conference series:

Abstract

Polymorphism has become a common way of designing short and reusable programs by abstracting generic definitions from type-specific ones. Such a convenience is valuable in logic as well, because it unburdens the specifier from writing redundant declarations of logical symbols. However, top shelf automated theorem provers such as Simplify, Yices or other SMT-LIB ones do not handle polymorphism. To this end, we present efficient reductions of polymorphism in both unsorted and many-sorted first order logics. For each encoding, we show that the formulas and their encoded counterparts are logically equivalent in the context of automated theorem proving. The efficiency keynote is to disturb the prover as little as possible, especially the internal decision procedures used for special sorts, e.g. integer linear arithmetic, to which we apply a special treatment. The corresponding implementations are presented in the framework of the Why/Caduceus toolkit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. In: Coq’Art: the Calculus of Inductive Constructions, Springer, Heidelberg (2004)

    Google Scholar 

  3. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a Theorem Prover for Program Checking. J. ACM 52(3), 365–473 (2005)

    Article  MathSciNet  Google Scholar 

  4. Déharbe, D., Ranise, S.: BDD-driven First-Order Satisfiability Procedures (extended version). Technical Report 4630, LORIA (2002)

    Google Scholar 

  5. Ranise, S., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB) (2006), http://www.SMT-LIB.org

  6. Dutertre, B., de Moura, L.: The YICES SMT Solver (2006), avaliable at http://yices.csl.sri.com/tool-paper.pdf

  7. Barrett, C.W., Berezin, S.: CVC Lite: A New Implementation of the Cooperating Validity Checker Category B. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 515–518. Springer, Heidelberg (2004)

    Google Scholar 

  8. Couchot, J.F., Lescuyer, S.: Handling Polymorphism in Automated Deduction (2007), Available at http://lri.fr/~couchot/ftp/publis/CL07t.ps

  9. Enderton, H.B.: A Mathematical Introduction to Logic. Ac. Press, Inc. (1972)

    Google Scholar 

  10. Armando, A., Ranise, S., Rusinowitch, M.: A Rewriting Approach to Satisfiability Procedures. Journal of Information and computation 183, 140–164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lescuyer, S.: Codage de la logique du premier ordre polymorphe multi-sortée dans la logique sans sortes. Master’s thesis (in english), pp. 28–58 (2006)

    Google Scholar 

  12. Pugh, W.: The Omega Test: a fast and practical integer programming algorithm for dependence analysis. Communications of the ACM 35(8), 102–114 (1992)

    Article  Google Scholar 

  13. Ayache, N., Filliâtre, J.C.: Combining the Coq Proof Assistant with First-Order Decision Procedures. Unpublished (March 2006)

    Google Scholar 

  14. Filliâtre, J.C.: Why: a multi-language multi-prover verification tool. Research Report 1366, LRI, Université Paris Sud (March 2003)

    Google Scholar 

  15. Filliâtre, J.C., Marché, C.: Multi-Prover Verification of C Programs. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer, Heidelberg (2004)

    Google Scholar 

  16. Dahn, I.: Interpretation of a mizar-like logic in first-order logic. In: Selected Papers from Automated Deduction in Classical and Non-Classical Logics, pp. 137–151. Springer, London (2000)

    Chapter  Google Scholar 

  17. Schmitt, S., Lorigo, L., Kreitz, C., Nogin, A.: Jprover: Integrating connection-based theorem proving into interactive proof assistants. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 421–426. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Rudnicki, P.: An overview of the Mizar project. In: Workshop on Types for Proofs and Programs, pp. 311–330 (1992)

    Google Scholar 

  19. Allen, S.F., Constable, R.L., Eaton, R., Kreitz, C., Lorigo, L.: The nuprl open logical environment. In: McAllester, D. (ed.) Automated Deduction - CADE-17. LNCS, vol. 1831, pp. 170–176. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Hurd, J.: First-Order Proof Tactics in Higher-Order Logic Theorem Provers. Technical Report NASA/CP-2003-212448, NASA (2003)

    Google Scholar 

  21. Meng, J., Paulson, L.C.: Translating Higher-Order Problems to First-Order Clauses. In: ESCoR (CEUR Workshop Proceedings), vol. 192, pp. 70–80 (2006)

    Google Scholar 

  22. Meng, J., Quigley, C., Paulson, L.C.: Automation for interactive proof: first prototype. Inf. Comput. 204(10), 1575–1596 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schulz, S.: System Description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004)

    Google Scholar 

  24. Riazanov, A., Voronkov, A.: The design and Implementation of VAMPIRE. AI Commun. 15(2-3), 91–110 (2002)

    MATH  Google Scholar 

  25. Paulson, L.C.: A generic tableau prover and its integration with Isabelle. J. UCS: Journal of Universal Computer Science 5(3), 73 (1999)

    MATH  MathSciNet  Google Scholar 

  26. Bouillaguet, C., Kuncak, V., Wies, T., Zee, K., Rinard, M.: Using first-order theorem provers in the Jahob data structure verification system. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 74–88. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Pfenning

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Couchot, JF., Lescuyer, S. (2007). Handling Polymorphism in Automated Deduction. In: Pfenning, F. (eds) Automated Deduction – CADE-21. CADE 2007. Lecture Notes in Computer Science(), vol 4603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73595-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73595-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73594-6

  • Online ISBN: 978-3-540-73595-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics