Abstract
In this paper, we propose to study the interest of relaxing qualitative constraints networks by using the formalism of discrete Constraint Satisfaction Problem (CSP). This allows us to avoid the introduction of new definitions and properties in the domain of qualitative reasoning. We first propose a general (but incomplete) approach to show the unsatisfiability of qualitative networks, by using a relaxation on any set of relations. Interestingly enough, for some qualitative calculi, the proposed scheme can be extended to determine the satisfiability of any qualitative network, leading to an original, simple and complete method. However, as the efficiency of our approach depends on the chosen relaxation, total relations should be preferred due to their connections with the hardness of constraint networks. We then present some preliminary experimental results, with respect to unsatisfiability, which show some promising improvements on some classes of random qualitative networks.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allen, J.F.: An interval-based representation of temporal knowledge. In: Proceedings of IJCAI 1981, pp. 221–226 (1981)
Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of the ACM 26(11), 832–843 (1983)
Balbiani, P., Condotta, J.F., Fariñas del Cerro, L.: A model for reasoning about bidimensional temporal relations. In: Proceedings of KR 1998, pp. 124–130 (1998)
Balbiani, P., Osmani, A.: A model for reasoning about topologic relations between cyclic intervals. In: Proceedings of KR 2000, pp. 378–385 (2000)
Bistarelli, S., Codognet, P., Rossi, F.: An abstraction framework for soft constraints and its relationship with constraint propagation. In: Choueiry, B.Y., Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, pp. 71–86. Springer, Heidelberg (2000)
Bistarelli, S., Codognet, P., Rossi, F.: Abstracting soft constraints: framework, properties, examples. Artificial Intelligence 139, 175–211 (2002)
Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of ECAI 2004, pp. 146–150 (2004)
Cadoli, M.: Tractable Reasoning in Aritificial Intelligence. LNCS, vol. 941. Springer, Heidelberg (1995)
Caseau, Y.: Abstract interpretation of constraints on order-sorted domains. In: Proceedings of ISLP 1991, pp. 435–452 (1991)
Choueiry, B., Faltings, B., Weigel, R.: Abstraction by interchangeability in resource allocation. In: Proceedings of IJCAI 1995, pp. 1694–1710 (1995)
Choueiry, B., Noubir, G.: On the computation of local interchangeability in discrete constraint satisfaction problems. In: Proceedings of AAAI 1998, pp. 326–333 (1998)
Condotta, J.F., Dalmeida, D., Lecoutre, C., Sais, L.: From qualitative to discrete constraint networks. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314, pp. 54–64. Springer, Heidelberg (2007)
Condotta, J.F., Ligozat, G., Saade, M.: The QAT: A Qualitative Algebra Toolkit. In: Proceedings of TIME 2006, pp. 69–77 (2006)
Cousot, P., Cousot, R.: Abstract interpretation frameworks. Logic and Computation 2(4), 447–511 (1992)
Freuder, E., Sabin, D.: Interchangeability supports abstraction and reformulation for constraint satisfaction. In: Proceedings of SARA 1995 (1995)
Giunchiglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 56(2-3), 323–390 (1992)
Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. Journal of Automated Reasoning 24, 67–100 (2000)
Hornsby, K., Egenhofer, M.J., Hayes, P.J.: Modeling cyclic change. In: Proceedings of REIS 1999, pp. 98–109 (2006)
Isli, A., Cohn, A.G.: A new approach to cyclic ordering of 2D orientations using ternary relation algebras. Artificial Intelligence 122(1–2), 137–187 (2000)
Jussien, N.: Relaxation de Contraintes pour les problémes dynamiques. PhD thesis, Universitè de Rennes I (1997)
Jussien, N., Boizumault, P.: Implementing constraint relaxation over finite domains using ATMS. In: Jampel, M., Maher, M.J., Freuder, E.C. (eds.) Over-Constrained Systems. LNCS, vol. 1106, Springer, Heidelberg (1996)
Ligozat, G.: Reasoning about cardinal directions. Journal of Visual Languages and Computing 1(9), 23–44 (1998)
Marriott, K.: Frameworks for abstract interpretation. Acta Informatica 30, 103–129 (1993)
Merchez, S., Lecoutre, C., Boussemart, F.: Abstraction de réseaux de contraintes. Revue d’Intelligence Artificielle 20(1), 31–62 (2006)
Nebel, B., Bürckert, H.J.: Reasoning About Temporal Relations: A Maximal Tractable Subclass of Allen’s Interval Algebra. Journal of the ACM 42(1), 43–66 (1995)
Pham, D.N., Thornton, J., Sattar, A.: Modelling and solving temporal reasoning as propositional satisfiablitly. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 117–131. Springer, Heidelberg (2005)
Pujari, A.K., Kumari, G.V., Sattar, A.: Indu: An interval and duration network. In: Proceedings of the Australian Joint Conference on Artificial Intelligence, pp. 291–303 (1999)
Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proceedings of KR 1992, pp. 165–176 (1992)
Selman, B., Kautz, H.: Knowledge compilation and theory approximation. Journal of the ACM 43(2), 193–224 (1996)
Shrag, R., Miranker, D.: Abstraction and the csp phase transition boundary. In: Proceedings of the 4th International Symposium on Artificial Intelligence and Mathematics, pp. 138–141 (1996)
Yokoo, M.: Constraint relaxation in distributed constraint satisfaction problems. In: Proceedings of ICTAI 2003, pp. 56–63 (1993)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
D’Almeida, D., Condotta, JF., Lecoutre, C., Saïs, L. (2007). Relaxation of Qualitative Constraint Networks. In: Miguel, I., Ruml, W. (eds) Abstraction, Reformulation, and Approximation. SARA 2007. Lecture Notes in Computer Science(), vol 4612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73580-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-73580-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73579-3
Online ISBN: 978-3-540-73580-9
eBook Packages: Computer ScienceComputer Science (R0)