[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Satisfying KBO Constraints

  • Conference paper
Term Rewriting and Applications (RTA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4533))

Included in the following conference series:

Abstract

This paper presents two new approaches to prove termination of rewrite systems with the Knuth-Bendix order efficiently. The constraints for the weight function and for the precedence are encoded in (pseudo-)propositional logic and the resulting formula is tested for satisfiability. Any satisfying assignment represents a weight function and a precedence such that the induced Knuth-Bendix order orients the rules of the encoded rewrite system from left to right.

This research is supported by FWF (Austrian Science Fund) project P18763. Some of the results in this paper were first announced in [23].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  3. Codish, M., Lagoon, V., Stuckey, P.: Solving partial order constraints for LPO termination. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 4–18. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Codish, M., Schneider-Kamp, P., Lagoon, V., Thiemann, R., Giesl, J.: SAT solving for argument filterings. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 30–44. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Dick, J., Kalmus, J., Martin, U.: Automating the Knuth-Bendix ordering. Acta. Infomatica 28, 95–119 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eén, N.: Personal conversation, Google Group on Minisat (2007)

    Google Scholar 

  7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Google Scholar 

  8. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

    MATH  Google Scholar 

  9. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 574–588. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Proc. 10th International Conference on Theory and Applications of Satisfiability Testing. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 175–184. Springer, Heidelberg (2005)

    Google Scholar 

  13. Hofbauer, D., Waldmann, J.: Termination of string rewriting with matrix interpretations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, New York (1970)

    Google Scholar 

  15. Korovin, K., Voronkov, A.: Orienting rewrite rules with the Knuth-Bendix order. Information and Computation 183, 165–186 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kurihara, M., Kondo, H.: Efficient BDD encodings for partial order constraints with application to expert systems in software verification. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 827–837. Springer, Heidelberg (2004)

    Google Scholar 

  17. Manquinho, V., Roussel, O.: Pseudo-boolean evaluation (2007), http://www.cril.univartois.fr/PB07/

  18. Marché, C.: Termination problem data base (TPDB), version 3.2 (June 2006), www.lri.fr/~marche/tpdb

  19. Steinbach, J.: Extensions and comparison of simplification orders. In: Dershowitz, N. (ed.) Rewriting Techniques and Applications. LNCS, vol. 355, pp. 434–448. Springer, Heidelberg (1989)

    Google Scholar 

  20. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies in Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125 (1968)

    Google Scholar 

  21. Zankl, H.: SAT techniques for lexicographic path orders. Seminar report (2006), Available at http://arxiv.org/abs/cs.SC/0605021

  22. Zankl, H., Hirokawa, N., Middeldorp, A.: Constraints for argument filterings. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 579–590. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Zankl, H., Middeldorp, A.: KBO as a satisfaction problem. In: Proc. 8th International Workshop on Termination, pp. 55–59 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Franz Baader

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zankl, H., Middeldorp, A. (2007). Satisfying KBO Constraints. In: Baader, F. (eds) Term Rewriting and Applications. RTA 2007. Lecture Notes in Computer Science, vol 4533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73449-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73449-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73447-5

  • Online ISBN: 978-3-540-73449-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics