Abstract
This paper presents two new approaches to prove termination of rewrite systems with the Knuth-Bendix order efficiently. The constraints for the weight function and for the precedence are encoded in (pseudo-)propositional logic and the resulting formula is tested for satisfiability. Any satisfying assignment represents a weight function and a precedence such that the induced Knuth-Bendix order orients the rules of the encoded rewrite system from left to right.
This research is supported by FWF (Austrian Science Fund) project P18763. Some of the results in this paper were first announced in [23].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
Codish, M., Lagoon, V., Stuckey, P.: Solving partial order constraints for LPO termination. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 4–18. Springer, Heidelberg (2006)
Codish, M., Schneider-Kamp, P., Lagoon, V., Thiemann, R., Giesl, J.: SAT solving for argument filterings. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 30–44. Springer, Heidelberg (2006)
Dick, J., Kalmus, J., Martin, U.: Automating the Knuth-Bendix ordering. Acta. Infomatica 28, 95–119 (1990)
Eén, N.: Personal conversation, Google Group on Minisat (2007)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)
Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 574–588. Springer, Heidelberg (2006)
Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Proc. 10th International Conference on Theory and Applications of Satisfiability Testing. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)
Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)
Hirokawa, N., Middeldorp, A.: Tyrolean termination tool. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 175–184. Springer, Heidelberg (2005)
Hofbauer, D., Waldmann, J.: Termination of string rewriting with matrix interpretations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342. Springer, Heidelberg (2006)
Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, New York (1970)
Korovin, K., Voronkov, A.: Orienting rewrite rules with the Knuth-Bendix order. Information and Computation 183, 165–186 (2003)
Kurihara, M., Kondo, H.: Efficient BDD encodings for partial order constraints with application to expert systems in software verification. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 827–837. Springer, Heidelberg (2004)
Manquinho, V., Roussel, O.: Pseudo-boolean evaluation (2007), http://www.cril.univartois.fr/PB07/
Marché, C.: Termination problem data base (TPDB), version 3.2 (June 2006), www.lri.fr/~marche/tpdb
Steinbach, J.: Extensions and comparison of simplification orders. In: Dershowitz, N. (ed.) Rewriting Techniques and Applications. LNCS, vol. 355, pp. 434–448. Springer, Heidelberg (1989)
Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies in Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125 (1968)
Zankl, H.: SAT techniques for lexicographic path orders. Seminar report (2006), Available at http://arxiv.org/abs/cs.SC/0605021
Zankl, H., Hirokawa, N., Middeldorp, A.: Constraints for argument filterings. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 579–590. Springer, Heidelberg (2007)
Zankl, H., Middeldorp, A.: KBO as a satisfaction problem. In: Proc. 8th International Workshop on Termination, pp. 55–59 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zankl, H., Middeldorp, A. (2007). Satisfying KBO Constraints. In: Baader, F. (eds) Term Rewriting and Applications. RTA 2007. Lecture Notes in Computer Science, vol 4533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73449-9_29
Download citation
DOI: https://doi.org/10.1007/978-3-540-73449-9_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73447-5
Online ISBN: 978-3-540-73449-9
eBook Packages: Computer ScienceComputer Science (R0)