[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Efficient Reinforcement Hybrid Evolutionary Learning for Recurrent Wavelet-Based Neuro-fuzzy Systems

  • Conference paper
New Trends in Applied Artificial Intelligence (IEA/AIE 2007)

Abstract

This paper proposes a recurrent wavelet-based neuro-fuzzy system (RWNFS) with the reinforcement hybrid evolutionary learning algorithm (R-HELA) for solving various control problems. The proposed R-HELA combines the compact genetic algorithm (CGA) and the modified variable-length genetic algorithm (MVGA), performs the structure/ parameter learning for dynamically constructing the RWNFS. That is, both the number of rules and the adjustment of parameters in the RWNFS are designed concurrently by the R-HELA. In the R-HELA, individuals of the same length constitute the same group. There are multiple groups in a population. The evolution of a population consists of three major operations: group reproduction using the compact genetic algorithm, variable two-part crossover, and variable two-part mutation. An illustrative example was conducted to show the performance and applicability of the proposed R-HELA method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lin, C.T., Lee, C.S.G.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent System. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  2. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man, Cybern. 15, 116–132 (1985)

    MATH  Google Scholar 

  3. Lin, C.J., Chin, C.C.: Prediction and identification using wavelet-based recurrent fuzzy neural networks. IEEE Trans. on Systems, Man, and Cybernetics (Part:B) 34, 2144–2154 (2004)

    Article  Google Scholar 

  4. Fogel, L.J.: Evolutionary programming in perspective: The top-down view. In: Zurada, J.M., Marks II, R.J., Goldberg, C. (eds.) Computational Intelligence: Imitating Life, IEEE Press, Piscataway, NJ (1994)

    Google Scholar 

  5. Karr, C.L.: Design of an adaptive fuzzy logic controller using a genetic algorithm. In: Proc. The Fourth Int. Conf. Genetic Algorithms, pp. 450–457 (1991)

    Google Scholar 

  6. Lin, C.T., Jou, C.P.: GA-based fuzzy reinforcement learning for control of a magnetic bearing system. IEEE Trans. Syst. Man, Cybern. Part B 30, 276–289 (2000)

    Google Scholar 

  7. Juang, C.F., Lin, J.Y., Lin, C.T.: Genetic reinforcement learning through symbiotic evolution for fuzzy controller design. IEEE Trans. Syst. Man, Cybern. Part B 30, 290–302 (2000)

    Article  Google Scholar 

  8. Bandyopadhyay, S., Murthy, C.A., Pal, S.K.: VGA-classfifer: design and applications. IEEE Trans s. Syst. Man, and Cyber. Part B 30, 890–895 (2000)

    Article  Google Scholar 

  9. Juang, C.F.: Combination of online clustering and Q-value based GA for reinforcement fuzzy system design. IEEE Trans. Fuzzy Systems 13, 289–302 (2005)

    Article  Google Scholar 

  10. Michalewicz, Z.: Genetic Algorithms+Data Structures=Evolution Programs. Springer, New York (1999)

    Google Scholar 

  11. Tanese, R.: Distributed genetic algorithm. In: Proc. Int. Conf. Genetic Algorithms, pp. 434–439 (1989)

    Google Scholar 

  12. Arabas, J., Michalewicz, Z., Mulawka, J.: GAVaPS-A genetic algorithm with varying population size. In: Proc. IEEE Int. Conf. on Evolutionary Computation, pp. 73–78 (1994)

    Google Scholar 

  13. Moriarty, D.E., Miikkulainen, R.: Efficient reinforcement learning through symbiotic evolution. Mach. Learn. 22, 11–32 (1996)

    Google Scholar 

  14. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Trans. Evolutionary Computation, 450–457 (1991)

    Google Scholar 

  15. Lee, K.Y., Bai, X., Park, Y.-M.: Optimization method for reactive power planning by using a modified simple genetic algorithm. IEEE Trans. Power Systems 10, 1843–1850 (1995)

    Article  Google Scholar 

  16. Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L.: Advances in Fuzzy Systems-Applications and Theory. World Scientific Publishing, NJ (2001)

    Google Scholar 

  17. Whitley, D., Dominic, S., Das, R., Anderson, C.W.: Genetic reinforcement learning for neuro control problems. Mach. Learn. 13, 259–284 (1993)

    Article  Google Scholar 

  18. Wang, H., Kwong, S., Jin, Y., Wei, W., Man, K.F.: Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets and Systems 149, 149–186 (2005)

    Article  MATH  Google Scholar 

  19. Ho, D.W.C., Zhang, P.A., Xu, J.: Fuzzy wavelet networks for function learning. IEEE Trans. Fuzzy Systs. 9, 200–211 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hiroshi G. Okuno Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Chen, CH., Lin, CJ., Lee, CY. (2007). Efficient Reinforcement Hybrid Evolutionary Learning for Recurrent Wavelet-Based Neuro-fuzzy Systems. In: Okuno, H.G., Ali, M. (eds) New Trends in Applied Artificial Intelligence. IEA/AIE 2007. Lecture Notes in Computer Science(), vol 4570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73325-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73325-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73322-5

  • Online ISBN: 978-3-540-73325-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics