Abstract
In this paper, we present a novel continuous mixture of diffusion tensors model for the diffusion-weighted MR signal attenuation. The relationship between the mixing distribution and the MR signal attenuation is shown to be given by the Laplace transform defined on the space of positive definite diffusion tensors. The mixing distribution when parameterized by a mixture of Wishart distributions (MOW) is shown to possess a closed form expression for its Laplace transform, called the Rigaut-type function, which provides an alternative to the Stejskal-Tanner model for the MR signal decay. Our model naturally leads to a deconvolution formulation for multi-fiber reconstruction. This deconvolution formulation requires the solution to an ill-conditioned linear system. We present several deconvolution methods and show that the nonnegative least squares method outperforms all others in achieving accurate and sparse solutions in the presence of noise. The performance of our multi-fiber reconstruction method using the MOW model is demonstrated on both synthetic and real data along with comparisons with state-of-the-art techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bihan, D.L.: Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci. 4, 469–480 (2003)
Basser, P.J., Mattiello, J., Bihan, D.L.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994)
Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 577–582 (2002)
Frank, L.: Characterization of anisotropy in high angular resolution diffusion weighted MRI. Magn. Reson. Med. 47, 1083–1099 (2002)
Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50, 955–965 (2003)
Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)
Anderson, A.W.: Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn. Reson. Med. 54, 1194–1206 (2005)
Hess, C.P., Mukherjee, P., Han, E.T., Xu, D., Vigneron, D.B.: Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn. Reson. Med. 56, 104–117 (2006)
Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: A fast and robust ODF estimation algorithm in q-ball imaging. In: ISBI 2006, pp. 81–84 (2006)
Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 1377–1386 (2005)
Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31, 1086–1103 (2006)
Behrens, T., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R., Clare, S., Matthews, P., Brady, J., Smith, S.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088 (2003)
Ramirez-Manzanares, A., Rivera, M., Vemuri, B.C., Mareci, T.H.: Basis functions for estimating intra-voxel structure in DW-MRI. In: Proc. IEEE Medical Imaging Conference, Roma, Italy 2004, pp. 4207–4211. IEEE Computer Society Press, Los Alamitos (2004)
Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23, 1176–1185 (2004)
Alexander, D.C.: Maximum entropy spherical deconvolution for diffusion MRI. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 76–87. Springer, Heidelberg (2005)
Tournier, J.D., Calamente, F., Connelly, A.: Improved characterisation of crossing fibres: spherical deconvolution combined with Tikhonov regularization. In: ISMRM 2006 (2006)
Köpf, M., Metzler, R., Haferkamp, O., Nonnenmacher, T.F.: NMR studies of anomalous diffusion in biological tissues: Experimental observation of Lévy stable processes. Fractals in Biology and Medicine. 2, 354–364 (1998)
Mathai, A.M.: Jacobians and functions of matrix argument. World Scientific, Singapore (1997)
Rigaut, J.P.: An empirical formulation relating boundary lengths to resolution in specimens showing ‘non-ideally fractal dimensions. J Microsc 133, 41–54 (1984)
Sen, P.N., Hürlimann, M.D., de Swiet, T.M.: Debye-Porod law of diffraction for diffusion in porous media. Phys. Rev. B 51, 601–604 (1995)
Sakaie, K.E., Lowe, M.J.: An objective method for regularization of fiber orientation distribution derived from diffusion-weighed MRI. NeuroImage 34, 169–176 (2007)
Candès, E.J., Romberg, J.K., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Info. Theory 52, 489–509 (2006)
Candés, E., Romberg, J.: l 1-MAGIC (2006), http://www.l1-magic.org
Lawson, C., Hanson, R.J.: Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs (1974)
Söderman, O., Jönsson, B.: Restricted diffusion in cylindirical geometry. J. Magn. Reson. B 117, 94–97 (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Jian, B., Vemuri, B.C. (2007). Multi-fiber Reconstruction from Diffusion MRI Using Mixture of Wisharts and Sparse Deconvolution. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_32
Download citation
DOI: https://doi.org/10.1007/978-3-540-73273-0_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73272-3
Online ISBN: 978-3-540-73273-0
eBook Packages: Computer ScienceComputer Science (R0)