[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-fiber Reconstruction from Diffusion MRI Using Mixture of Wisharts and Sparse Deconvolution

  • Conference paper
Information Processing in Medical Imaging (IPMI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

Abstract

In this paper, we present a novel continuous mixture of diffusion tensors model for the diffusion-weighted MR signal attenuation. The relationship between the mixing distribution and the MR signal attenuation is shown to be given by the Laplace transform defined on the space of positive definite diffusion tensors. The mixing distribution when parameterized by a mixture of Wishart distributions (MOW) is shown to possess a closed form expression for its Laplace transform, called the Rigaut-type function, which provides an alternative to the Stejskal-Tanner model for the MR signal decay. Our model naturally leads to a deconvolution formulation for multi-fiber reconstruction. This deconvolution formulation requires the solution to an ill-conditioned linear system. We present several deconvolution methods and show that the nonnegative least squares method outperforms all others in achieving accurate and sparse solutions in the presence of noise. The performance of our multi-fiber reconstruction method using the MOW model is demonstrated on both synthetic and real data along with comparisons with state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bihan, D.L.: Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci. 4, 469–480 (2003)

    Article  Google Scholar 

  2. Basser, P.J., Mattiello, J., Bihan, D.L.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994)

    Article  Google Scholar 

  3. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 577–582 (2002)

    Article  Google Scholar 

  4. Frank, L.: Characterization of anisotropy in high angular resolution diffusion weighted MRI. Magn. Reson. Med. 47, 1083–1099 (2002)

    Article  Google Scholar 

  5. Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50, 955–965 (2003)

    Article  Google Scholar 

  6. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)

    Article  Google Scholar 

  7. Anderson, A.W.: Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn. Reson. Med. 54, 1194–1206 (2005)

    Article  Google Scholar 

  8. Hess, C.P., Mukherjee, P., Han, E.T., Xu, D., Vigneron, D.B.: Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn. Reson. Med. 56, 104–117 (2006)

    Article  Google Scholar 

  9. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: A fast and robust ODF estimation algorithm in q-ball imaging. In: ISBI 2006, pp. 81–84 (2006)

    Google Scholar 

  10. Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 1377–1386 (2005)

    Article  Google Scholar 

  11. Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31, 1086–1103 (2006)

    Article  Google Scholar 

  12. Behrens, T., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R., Clare, S., Matthews, P., Brady, J., Smith, S.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088 (2003)

    Article  Google Scholar 

  13. Ramirez-Manzanares, A., Rivera, M., Vemuri, B.C., Mareci, T.H.: Basis functions for estimating intra-voxel structure in DW-MRI. In: Proc. IEEE Medical Imaging Conference, Roma, Italy 2004, pp. 4207–4211. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  14. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23, 1176–1185 (2004)

    Article  Google Scholar 

  15. Alexander, D.C.: Maximum entropy spherical deconvolution for diffusion MRI. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 76–87. Springer, Heidelberg (2005)

    Google Scholar 

  16. Tournier, J.D., Calamente, F., Connelly, A.: Improved characterisation of crossing fibres: spherical deconvolution combined with Tikhonov regularization. In: ISMRM 2006 (2006)

    Google Scholar 

  17. Köpf, M., Metzler, R., Haferkamp, O., Nonnenmacher, T.F.: NMR studies of anomalous diffusion in biological tissues: Experimental observation of Lévy stable processes. Fractals in Biology and Medicine. 2, 354–364 (1998)

    Google Scholar 

  18. Mathai, A.M.: Jacobians and functions of matrix argument. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  19. Rigaut, J.P.: An empirical formulation relating boundary lengths to resolution in specimens showing ‘non-ideally fractal dimensions. J Microsc 133, 41–54 (1984)

    Google Scholar 

  20. Sen, P.N., Hürlimann, M.D., de Swiet, T.M.: Debye-Porod law of diffraction for diffusion in porous media. Phys. Rev. B 51, 601–604 (1995)

    Article  Google Scholar 

  21. Sakaie, K.E., Lowe, M.J.: An objective method for regularization of fiber orientation distribution derived from diffusion-weighed MRI. NeuroImage 34, 169–176 (2007)

    Article  Google Scholar 

  22. Candès, E.J., Romberg, J.K., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Info. Theory 52, 489–509 (2006)

    Article  Google Scholar 

  23. Candés, E., Romberg, J.: l 1-MAGIC (2006), http://www.l1-magic.org

  24. Lawson, C., Hanson, R.J.: Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  25. Söderman, O., Jönsson, B.: Restricted diffusion in cylindirical geometry. J. Magn. Reson. B 117, 94–97 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Jian, B., Vemuri, B.C. (2007). Multi-fiber Reconstruction from Diffusion MRI Using Mixture of Wisharts and Sparse Deconvolution. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics