[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Combining Radiometric and Spatial Structural Information in a New Metric for Minimal Surface Segmentation

  • Conference paper
Information Processing in Medical Imaging (IPMI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

Abstract

Segmentation of anatomical structures via minimal surface extraction using gradient-based metrics is a popular approach, but exhibits some limits in the case of weak or missing contour information. We propose a new framework to define metrics, robust to missing image information. Given an object of interest we combine gray-level information and knowledge about the spatial organization of cerebral structures, into a fuzzy set which is guaranteed to include the object’s boundaries. From this set we derive a metric which is used in a minimal surface segmentation framework. We show how this metric leads to improved segmentation of subcortical gray matter structures. Quantitative results on the segmentation of the caudate nucleus in T1 MRI are reported on 18 normal subjects and 6 pathological cases.

Index terms:

  • minimal surface segmentation

  • level sets

  • spatial relations

  • fuzzy knowledge representation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: IEEE International Conference on Computer Vision, ICCV 1995, pp. 694–699. IEEE Computer Society Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  2. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: IEEE International Conference on Computer Vision, ICCV 2003, pp. 26–33. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  3. Cohen, L., Kimmel, R.: Global Minimum for Active Contour Models: A Minimal Path Approach. International Journal of Computer Vision 24(1), 57–78 (1997)

    Article  Google Scholar 

  4. Grady, L.: Computing exact discrete minimal surfaces: Extending and solving the shortest path problem in 3D with application to segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2006. vol. 1, pp. 69–78 (2006)

    Google Scholar 

  5. Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000. vol. 1, pp. 316–323 (2000)

    Google Scholar 

  6. Paragios, N., Deriche, R.: Geodesic active regions: A new framework to deal with frame partition problems in computer vision. Journal of Visual Communication and Image Representation 13(1), 249–268 (2002)

    Article  Google Scholar 

  7. Bloch, I.: Fuzzy Spatial Relationships for Image Processing and Interpretation: A Review. Image and Vision Computing 23(2), 89–110 (2005)

    Article  Google Scholar 

  8. Bloch, I., Géraud, T., Maître, H.: Representation and Fusion of Heterogeneous Fuzzy Information in the 3D Space for Model-Based Structural Recognition - Application to 3D Brain Imaging. Artificial Intelligence 148, 141–175 (2003)

    Article  MATH  Google Scholar 

  9. Colliot, O., Camara, O., Bloch, I.: Integration of Fuzzy Spatial Relations in Deformable Models - Application to Brain MRI Segmentation. Pattern Recognition 39, 1401–1414 (2006)

    Article  Google Scholar 

  10. Atif, J., Nempont, O., Colliot, O., Angelini, E., Bloch, I.: Level Set Deformable Models Constrained by Fuzzy Spatial Relation. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2006, pp. 1534–1541 (2006)

    Google Scholar 

  11. Bloch, I., Maître, H., Anvari, M.: Fuzzy Adjacency between Image Objects. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5(6), 615–653 (1997)

    Article  Google Scholar 

  12. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New-York (1980)

    MATH  Google Scholar 

  13. Gout, C., Le Guyader, C., Vese, L.: Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods. Numerical Algorithms 39(1), 155–173 (2005)

    Article  MATH  Google Scholar 

  14. Khotanlou, H., Colliot, O., Bloch, I.: Automatic Brain Tumor Segmentation using Symmetry Analysis and Deformable Models. In: International Conference on Advances in Pattern Recognition, ICAPR 2007, pp. 198–202 (2007)

    Google Scholar 

  15. Ciofolo, C., Barillot, C.: Brain Segmentation with Competitive Level Sets and Fuzzy Control. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 333–344. Springer, Heidelberg (2005)

    Google Scholar 

  16. Pitiot, A., Delingette, H., Thompson, P., Ayache, N.: Expert knowledge-guided segmentation system for brain MRI. Neuroimage 23(1), 85–96 (2004)

    Article  Google Scholar 

  17. Xue, J., Ruan, S., Moretti, B., Revenu, M., Bloyet, D.: Knowledge-based segmentation and labeling of brain structures from MRI images. Pattern Recognition Letters 22(3), 395–405 (2001)

    Article  MATH  Google Scholar 

  18. Zijdenbos, A., Dawant, B., Margolin, R.: Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Transactions on Medical Imaging 13(4), 716–724 (1994)

    Article  Google Scholar 

  19. Atif, J., Hudelot, C., Fouquier, G., Bloch, I., Angelini, E.: From Generic Knowledge to Specific Reasoning for Medical Image Interpretation using Graph-based Representations. In: International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 224–229 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Nempont, O., Atif, J., Angelini, E., Bloch, I. (2007). Combining Radiometric and Spatial Structural Information in a New Metric for Minimal Surface Segmentation. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics