[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Two Element Unavoidable Sets of Partial Words

  • Conference paper
Developments in Language Theory (DLT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4588))

Included in the following conference series:

Abstract

The notion of an unavoidable set of words appears frequently in the fields of mathematics and theoretical computer science, in particular with its connection to the study of combinatorics on words. The theory of unavoidable sets has seen extensive study over the past twenty years. In this paper we extend the definition of unavoidable sets of words to unavoidable sets of partial words. Partial words, or finite sequences that may contain a number of “do not know” symbols or holes, appear in natural ways in several areas of current interest such as molecular biology, data communication, DNA computing, etc. We demonstrate the utility of the notion of unavoidability on partial words by making use of it to identify several new classes of unavoidable sets of full words. Along the way we begin work on classifying the unavoidable sets of partial words of small cardinality. We pose a conjecture, and show that affirmative proof of this conjecture gives a sufficient condition for classifying all the unavoidable sets of partial words of size two. Lastly we give a result which makes the conjecture easy to verify for a significant number of cases.

This material is based upon work supported by the National Science Foundation under Grant No. DMS–0452020. A World Wide Web server interface at www.uncg.edu/mat/research/unavoidablesets has been established for automated use of the program. We thank the referees of preliminary versions of this paper for their very valuable comments and suggestions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Corasick, M.J.: Efficient string machines, an aid to bibliographic research. Comm. ACM 18, 333–340 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theoret. Comput. Sci. 218, 135–141 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blanchet-Sadri, F.: Codes, orderings, and partial words. Theoret. Comput. Sci. 329, 177–202 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blanchet-Sadri, F.: Primitive partial words. Discrete Appl. Math. 148, 195–213 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blanchet-Sadri, F., Duncan, S.: Partial Words and the Critical Factorization Theorem. J. Combin. Theory Ser. A 109, 221–245 (2005), http://www.uncg.edu/mat/cft/

    Article  MATH  MathSciNet  Google Scholar 

  6. Choffrut, C., Culik II, K.: On extendibility of unavoidable sets. Discrete Appl. Math. 9, 125–137 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Choffrut, C., Karhumäki, J.: Combinatorics of Words. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 329–438. Springer, Heidelberg (1997)

    Google Scholar 

  8. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free languages. Theoret. Comput. Sci. 27, 311–322 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kolpakov, R., Kucherov, G.: Finding Approximate Repetitions Under Hamming Distance. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 170–181. Springer-Verlag, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Kolpakov, R., Kucherov, G.: Finding Approximate Repetitions Under Hamming Distance. Theoret. Comput. Sci. 33, 135–156 (2003)

    Article  MathSciNet  Google Scholar 

  11. Landau, G., Schmidt, J.: An Algorithm for Approximate Tandem Repeats. In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) Combinatorial Pattern Matching. LNCS, vol. 684, pp. 120–133. Springer-Verlag, Heidelberg (1993)

    Chapter  Google Scholar 

  12. Landau, G.M., Schmidt, J.P., Sokol, D.: An Algorithm for Approximate Tandem Repeats. J. Comput. Biology 8, 1–18 (2001)

    Article  Google Scholar 

  13. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  14. Rosaz, L.: Inventories of unavoidable languages and the word-extension conjecture. Theoret. Comput. Sci. 201, 151–170 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schmidt, J.P.: All Highest Scoring Paths in Weighted Grid Graphs and Their Application to Finding All Approximate Repeats in Strings. SIAM J. Comput. 27, 972–992 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tero Harju Juhani Karhumäki Arto Lepistö

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blanchet-Sadri, F., Brownstein, N.C., Palumbo, J. (2007). Two Element Unavoidable Sets of Partial Words. In: Harju, T., Karhumäki, J., Lepistö, A. (eds) Developments in Language Theory. DLT 2007. Lecture Notes in Computer Science, vol 4588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73208-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73208-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73207-5

  • Online ISBN: 978-3-540-73208-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics