[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Certified Computer Algebra on Top of an Interactive Theorem Prover

  • Conference paper
Towards Mechanized Mathematical Assistants (MKM 2007, Calculemus 2007)

Abstract

We present a prototype of a computer algebra system that is built on top of a proof assistant, HOL Light. This architecture guarantees that one can be certain that the system will make no mistakes. All expressions in the system will have precise semantics, and the proof assistant will check the correctness of all simplifications according to this semantics. The system actually proves each simplification performed by the computer algebra system.

Although our system is built on top of a proof assistant, we designed the user interface to be very close in spirit to the interface of systems like Maple and Mathematica. The system, therefore, allows the user to easily probe the underlying automation of the proof assistant for strengths and weaknesses with respect to the automation of mainstream computer algebra systems. The system that we present is a prototype, but can be straightforwardly scaled up to a practical computer algebra system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armando, A., Zini, D.: Towards interoperable mechanized reasoning systems: the logic broker architecture. In: Corradi, A., Omicini, A., Poggi, A. (eds.) WOA, Pitagora Editrice Bologna, pp. 70–75 (2000)

    Google Scholar 

  2. Aslaksen, H.: Multiple-valued complex functions and computer algebra. SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Algebraic Manipulation) 30(2), 12–20 (1996)

    MATH  Google Scholar 

  3. Ballarin, C., Paulson, L.C.: A pragmatic approach to extending provers by computer algebra - with applications to coding theory. Fundam. Inf. 39(1-2), 1–20 (1999)

    MATH  MathSciNet  Google Scholar 

  4. Ballarin, C., Homann, K., Calmet, J.: Theorems and algorithms: an interface between Isabelle and Maple. In: ISSAC 1995. Proceedings of the 1995 international symposium on Symbolic and algebraic computation, pp. 150–157. ACM Press, New York (1995)

    Chapter  Google Scholar 

  5. Barendregt, H., Cohen, A.M.: Electronic communication of mathematics and the interaction of computer algebra systems and proof assistants. J. Symb. Comput. 32(1/2), 3–22 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bauer, A., Clarke, E.M., Zhao, X.: Analytica - an experiment in combining theorem proving and symbolic computation. Journal of Automated Reasoning 21(3), 295–325 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bertoli, P., Calmet, J., Giunchiglia, F., Homann, K.: Specification and integration of theorem provers and computer algebra systems. Fundam. Inform. 39(1-2), 39–57 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Buchberger, B., et al.: The Theorema Project: A Progress Report. In: Kerber, M., Kohlhase, M. (eds.) Symbolic Computation and Automated Reasoning (Proceedings of CALCULEMUS, Natick, Massachusetts, A.K. Peters (2000)

    Google Scholar 

  9. Carette, J., Farmer, W., Wajs, J.: Trustable communication between mathematics systems. In: CALCULEMUS 2003, Rome, Italy, Aracne, pp. 55–68 (2003)

    Google Scholar 

  10. Carlisle, D., Ion, P., Miner, R., Poppelier, N.: Mathematical Markup Language (MathML) Version 2.0, 2nd edn. (2003)

    Google Scholar 

  11. Char, B.W., Geddes, K.O., Gentleman, W.M., Gonnet, G.H.: The design of Maple: A compact, portable and powerful computer algebra system. Springer, London (1983)

    Google Scholar 

  12. Coq Development Team. The Coq Proof Assistant Reference Manual Version 8.0. INRIA-Rocquencourt (January 2005)

    Google Scholar 

  13. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2–9 (1997)

    Article  MathSciNet  Google Scholar 

  14. Adams, A., et al.: Computer algebra meets automated theorem proving: Integrating Maple and PVS. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 27–42. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Buswell, S., et al.: The OpenMath Standard, version 2.0 (2002)

    Google Scholar 

  16. Harrison, J.: HOL light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  17. Harrison, J., Théry, L.: A skeptic’s approach to combining HOL and Maple. Journal of Automated Reasoning 21, 279–294 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jackson, P.B.: Enhancing the Nuprl Proof Development System and Applying it to Computational Abstract Algebra. PhD thesis, Cornell University, Ithaca, NY, USA (January 1995)

    Google Scholar 

  19. Lester, D.R.: Effective continued fractions. In: Proceedings 15th IEEE Symposium on Computer Arithmetic, pp. 163–170. IEEE Computer Society Press, Washington (2001)

    Google Scholar 

  20. Poll, E., Thompson, S.: Adding the axioms to Axiom: Towards a system of automated reasoning in Aldor. In: Calculemus and Types 1998 (July 1998)

    Google Scholar 

  21. Sorge, V.: Non-trivial symbolic computations in proof planning. In: Kirchner, H. (ed.) Frontiers of Combining Systems. LNCS, vol. 1794, pp. 121–135. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Vuillemin, J.: Exact real computer arithmetic with continued fractions. In: LFP 1988. Proceedings of the 1988 ACM conference on LISP and functional programming, pp. 14–27. ACM Press, New York (1988)

    Chapter  Google Scholar 

  23. Wester, M.J. (ed.): Contents of Computer Algebra Systems: A Practical Guide, chapter A Critique of the Mathematical Abilities of CA Systems. John Wiley & Sons, Chichester, United Kingdom (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manuel Kauers Manfred Kerber Robert Miner Wolfgang Windsteiger

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaliszyk, C., Wiedijk, F. (2007). Certified Computer Algebra on Top of an Interactive Theorem Prover. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds) Towards Mechanized Mathematical Assistants. MKM Calculemus 2007 2007. Lecture Notes in Computer Science(), vol 4573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73086-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73086-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73083-5

  • Online ISBN: 978-3-540-73086-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics