[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Software Implementation of Arithmetic in

  • Conference paper
Arithmetic of Finite Fields (WAIFI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4547))

Included in the following conference series:

Abstract

Fast arithmetic for characteristic three finite fields is desirable in pairing-based cryptography because there is a suitable family of elliptic curves over having embedding degree 6. In this paper we present some structure results for Gaussian normal bases of , and use the results to devise faster multiplication algorithms. We carefully compare multiplication in using polynomial bases and Gaussian normal bases. Finally, we compare the speed of encryption and decryption for the Boneh-Franklin and Sakai-Kasahara identity-based encryption schemes at the 128-bit security level, in the case where supersingular elliptic curves with embedding degrees 2, 4 and 6 are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahmadi, O., Hankerson, D., Menezes, A.: Formulas for cube roots in . Discrete Applied Mathematics 155, 260–270 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Ash, D., Blake, I., Vanstone, S.: Low complexity normal bases. Discrete Applied Mathematics 25, 191–210 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Barreto, P.: A note on efficient computation of cube roots in characteristic 3, Technical Report 2004/305, Cryptology ePrint Archive (2004)

    Google Scholar 

  • Barreto, P., Galbraith, S., hÉigeartaigh, C., Scott, M.: Efficient pairing computation on supersingular abelian varieties. Designs, Codes and Cryptography 42, 239–271 (2007)

    Article  MATH  Google Scholar 

  • Barreto, P., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Blake, I., Gao, X., Menezes, A., Mullin, R., Vanstone, S., Yaghoobian, T.: Applications of Finite Fields. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  • Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM Journal on Computing 32, 586–615 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Boyen, X., Martin, L.: Identity-based cryptography standard (IBCS) #1: Supersingular curve implementations of the BF and BB1 cryptosystems, IETF Internet Draft (December 2006)

    Google Scholar 

  • Chen, L., Cheng, Z.: Security proof of Sakai-Kasahara’s identity-based encryption scheme. In: Smart, N.P. (ed.) Cryptography and Coding. LNCS, vol. 3796, pp. 442–459. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Dahab, R., Hankerson, D., Hu, F., Long, M., López, J., Menezes, A.: Software multiplication using Gaussian normal bases. IEEE Transactions on Computers 55, 974–984 (2006)

    Article  Google Scholar 

  • Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving revisited. IEEE Transactions on Computers 53, 1047–1059 (2004)

    Article  Google Scholar 

  • Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers, Technical Report 2006/165, Cryptology ePrint Archive (2006)

    Google Scholar 

  • Grabher, P., Page, D.: Hardware acceleration of the Tate pairing in characteristic three. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 398–411. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Granger, R., Page, D., Stam, M.: Hardware and software normal basis arithmetic for pairing based cryptography in characteristic three. IEEE Transactions on Computers 54, 852–860 (2005)

    Article  Google Scholar 

  • Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  • Harrison, K., Page, D., Smart, N.: Software implementation of finite fields of characteristic three, for use in pairing-based cryptosystems. LMS Journal of Computation and Mathematics 5, 181–193 (2002)

    MATH  MathSciNet  Google Scholar 

  • Hasan, M., Wang, M., Bhargava, V.: A modified Massey-Omura parallel multiplier for a class of finite fields. IEEE Transactions on Computers 42, 1278–1280 (1993)

    Article  Google Scholar 

  • Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. IEEE Transactions on Information Theory 52, 4595–4602 (2006)

    Article  MathSciNet  Google Scholar 

  • Intel Corporation, IA-32 Intel Architecture Software Developer’s Manual, Vol. 1: Basic Architecture. Number 245470-007 (2002), available from http://developer.intel.com .

  • Kerins, T., Marnane, W., Popovici, E., Barreto, P.: Efficient hardware for the Tate pairing calculation in characteristic three. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 412–426. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Lenstra, A.: Unbelievable security: Matching AES security using public key systems. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 67–86. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  • López, J., Dahab, R.: High-speed software multiplication in . In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 203–212. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  • Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for FR-reduction. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E84-A, 1234–1243 (2001)

    Google Scholar 

  • Ning, P., Yin, Y.: Efficient software implementation for finite field multiplication in normal basis. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 177–189. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  • Page, D., Smart, N.: Hardware implementation of finite fields of characteristic three. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 529–539. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  • Reyhani-Masoleh, A.: Efficient algorithms and architectures for field multiplication using Gaussian normal bases. IEEE Transactions on Computers 55, 34–47 (2006)

    Article  Google Scholar 

  • Sakai, R., Kasahara, M.: ID based cryptosystems with pairing on elliptic curve, Technical Report 2003/054, Cryptology ePrint Archive (2003)

    Google Scholar 

  • Schirokauer, O.: The number field sieve for integers of low weight, Technical Report 2006/107, Cryptology ePrint Archive (2006)

    Google Scholar 

  • Scott, M.: Computing the Tate pairing. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 293–304. Springer, Heidelberg (2005)

    Google Scholar 

  • Scott, M.: MIRACL – Multiprecision Integer and Rational Arithmetic C Library, http://www.computing.dcu.ie/~mike/miracl.html

  • Scott, M.: Implementing cryptographic pairings, preprint (2006)

    Google Scholar 

  • Scott, M., Costigan, N., Abdulwahab, W.: Implementing cryptographic pairings on smartcards. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 134–147. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Weaver, D., Germond, T. (eds.): The SPARC Architecture Manual (Version 9). Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  • Wu, H., Hasan, A., Blake, I., Gao, S.: Finite field multiplier using redundant representation. IEEE Transactions on Computers 51, 1306–1316 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Claude Carlet Berk Sunar

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahmadi, O., Hankerson, D., Menezes, A. (2007). Software Implementation of Arithmetic in . In: Carlet, C., Sunar, B. (eds) Arithmetic of Finite Fields. WAIFI 2007. Lecture Notes in Computer Science, vol 4547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73074-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73074-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73073-6

  • Online ISBN: 978-3-540-73074-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics