Abstract
Fast arithmetic for characteristic three finite fields is desirable in pairing-based cryptography because there is a suitable family of elliptic curves over having embedding degree 6. In this paper we present some structure results for Gaussian normal bases of , and use the results to devise faster multiplication algorithms. We carefully compare multiplication in using polynomial bases and Gaussian normal bases. Finally, we compare the speed of encryption and decryption for the Boneh-Franklin and Sakai-Kasahara identity-based encryption schemes at the 128-bit security level, in the case where supersingular elliptic curves with embedding degrees 2, 4 and 6 are employed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahmadi, O., Hankerson, D., Menezes, A.: Formulas for cube roots in . Discrete Applied Mathematics 155, 260–270 (2007)
Ash, D., Blake, I., Vanstone, S.: Low complexity normal bases. Discrete Applied Mathematics 25, 191–210 (1989)
Barreto, P.: A note on efficient computation of cube roots in characteristic 3, Technical Report 2004/305, Cryptology ePrint Archive (2004)
Barreto, P., Galbraith, S., hÉigeartaigh, C., Scott, M.: Efficient pairing computation on supersingular abelian varieties. Designs, Codes and Cryptography 42, 239–271 (2007)
Barreto, P., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)
Blake, I., Gao, X., Menezes, A., Mullin, R., Vanstone, S., Yaghoobian, T.: Applications of Finite Fields. Kluwer, Dordrecht (1993)
Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM Journal on Computing 32, 586–615 (2003)
Boyen, X., Martin, L.: Identity-based cryptography standard (IBCS) #1: Supersingular curve implementations of the BF and BB1 cryptosystems, IETF Internet Draft (December 2006)
Chen, L., Cheng, Z.: Security proof of Sakai-Kasahara’s identity-based encryption scheme. In: Smart, N.P. (ed.) Cryptography and Coding. LNCS, vol. 3796, pp. 442–459. Springer, Heidelberg (2005)
Dahab, R., Hankerson, D., Hu, F., Long, M., López, J., Menezes, A.: Software multiplication using Gaussian normal bases. IEEE Transactions on Computers 55, 974–984 (2006)
Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving revisited. IEEE Transactions on Computers 53, 1047–1059 (2004)
Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers, Technical Report 2006/165, Cryptology ePrint Archive (2006)
Grabher, P., Page, D.: Hardware acceleration of the Tate pairing in characteristic three. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 398–411. Springer, Heidelberg (2005)
Granger, R., Page, D., Stam, M.: Hardware and software normal basis arithmetic for pairing based cryptography in characteristic three. IEEE Transactions on Computers 54, 852–860 (2005)
Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)
Harrison, K., Page, D., Smart, N.: Software implementation of finite fields of characteristic three, for use in pairing-based cryptosystems. LMS Journal of Computation and Mathematics 5, 181–193 (2002)
Hasan, M., Wang, M., Bhargava, V.: A modified Massey-Omura parallel multiplier for a class of finite fields. IEEE Transactions on Computers 42, 1278–1280 (1993)
Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. IEEE Transactions on Information Theory 52, 4595–4602 (2006)
Intel Corporation, IA-32 Intel Architecture Software Developer’s Manual, Vol. 1: Basic Architecture. Number 245470-007 (2002), available from http://developer.intel.com .
Kerins, T., Marnane, W., Popovici, E., Barreto, P.: Efficient hardware for the Tate pairing calculation in characteristic three. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 412–426. Springer, Heidelberg (2005)
Lenstra, A.: Unbelievable security: Matching AES security using public key systems. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 67–86. Springer, Heidelberg (2001)
López, J., Dahab, R.: High-speed software multiplication in . In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 203–212. Springer, Heidelberg (2000)
Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for FR-reduction. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E84-A, 1234–1243 (2001)
Ning, P., Yin, Y.: Efficient software implementation for finite field multiplication in normal basis. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 177–189. Springer, Heidelberg (2001)
Page, D., Smart, N.: Hardware implementation of finite fields of characteristic three. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 529–539. Springer, Heidelberg (2003)
Reyhani-Masoleh, A.: Efficient algorithms and architectures for field multiplication using Gaussian normal bases. IEEE Transactions on Computers 55, 34–47 (2006)
Sakai, R., Kasahara, M.: ID based cryptosystems with pairing on elliptic curve, Technical Report 2003/054, Cryptology ePrint Archive (2003)
Schirokauer, O.: The number field sieve for integers of low weight, Technical Report 2006/107, Cryptology ePrint Archive (2006)
Scott, M.: Computing the Tate pairing. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 293–304. Springer, Heidelberg (2005)
Scott, M.: MIRACL – Multiprecision Integer and Rational Arithmetic C Library, http://www.computing.dcu.ie/~mike/miracl.html
Scott, M.: Implementing cryptographic pairings, preprint (2006)
Scott, M., Costigan, N., Abdulwahab, W.: Implementing cryptographic pairings on smartcards. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 134–147. Springer, Heidelberg (2006)
Weaver, D., Germond, T. (eds.): The SPARC Architecture Manual (Version 9). Prentice-Hall, Englewood Cliffs (1994)
Wu, H., Hasan, A., Blake, I., Gao, S.: Finite field multiplier using redundant representation. IEEE Transactions on Computers 51, 1306–1316 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ahmadi, O., Hankerson, D., Menezes, A. (2007). Software Implementation of Arithmetic in . In: Carlet, C., Sunar, B. (eds) Arithmetic of Finite Fields. WAIFI 2007. Lecture Notes in Computer Science, vol 4547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73074-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-73074-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73073-6
Online ISBN: 978-3-540-73074-3
eBook Packages: Computer ScienceComputer Science (R0)