[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Effects of Optimizations for Software Implementations of Small Binary Field Arithmetic

  • Conference paper
Arithmetic of Finite Fields (WAIFI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4547))

Included in the following conference series:

Abstract

We describe an implementation of binary field arithmetic written in the C programming language. Even though the implementation targets 32-bit CPUs, the results can be applied also to CPUs with different granularity.

We begin with separate routines for each operand size in words to minimize performance penalties that have a bigger relative impact for shorter operands – such as those used to implement modern curve based cryptography. We then proceed to use techniques specific to operand size in bits for several field sizes.

This results in an implementation of field arithmetic where the curve representing field multiplication performance closely resembles the theoretical quadratic bit-complexity that can be expected for small inputs.

This has important practical consequences: For instance, it will allow us to compare the performance of the arithmetic on curves of different genera and defined over fields of different sizes without worrying about penalties introduced by field arithmetic and concentrating on the curve arithmetic itself. Moreover, the cost of field inversion is very low, making the use of affine coordinates in curve arithmetic more interesting. These applications will be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Avanzi, R.: Aspects of hyperelliptic curves over large prime fields in software implementations. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 148–162. Springer, Heidelberg (2004)

    Google Scholar 

  • Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: The Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca Raton (2005)

    Google Scholar 

  • Fan, X., Wollinger, T., Wang, Y.: Efficient Doubling on Genus 3 Curves over Binary Fields. IACR ePrint 2005/228

    Google Scholar 

  • Fong, K., Hankerson, D., López, J., Menezes, A.: Field Inversion and Point Halving Revisited. IEEE Trans. Computers 53(8), 1047–1059 (2004)

    Article  Google Scholar 

  • Guyot, C., Kaveh, K., Patankar, V.M.: Explicit algorithm for the arithmetic on the hyperelliptic Jacobians of genus 3. J. Ramanujan Math. Soc. 19(2), 75–115 (2004)

    MATH  MathSciNet  Google Scholar 

  • Hankerson, D., López-Hernandez, J., Menezes, A.: Software Implementation of Elliptic Curve Cryprography over Binary Fields. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 1–24. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  • Karatsuba, A., Ofman, Y.: Multiplication of Multidigit Numbers on Automata. Soviet Physics - Doklady 7, 595–596 (1963)

    Google Scholar 

  • King, B.: An Improved Implementation of Elliptic Curves over GF(2n) when Using Projective Point Arithmetic. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 134–150. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  • Knuth, D.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 2. Addison Wesley Longman, Redwood City (1998)

    Google Scholar 

  • Lange, T.: Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite Fields via Explicit Formulae. Cryptology ePrint Archive, Report 2002/121

    Google Scholar 

  • Lange, T., Stevens, M.: Efficient doubling for genus two curves over binary fields. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 170–181. Springer, Heidelberg (2005)

    Google Scholar 

  • Lim, C., Lee, P.: More flexible exponentiation with precomputation. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Heidelberg (1994)

    Google Scholar 

  • López, J., Dahab, R.: High-speed software multiplication in \(F_{2^m}\). In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 203–212. Springer, Heidelberg (2000)

    Google Scholar 

  • Pelzl, J., Wollinger, T., Guajardo, J., Paar, C.: Hyperelliptic curve cryptosystems: closing the perfomance gap to elliptic curves (Update). IACR ePrint 2003/026

    Google Scholar 

  • Pelzl, J., Wollinger, T., Paar, C.: Low cost Security: Explicit Formulae for Genus 4 Hyperelliptic Curves. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 1–16. Springer, Heidelberg (2004)

    Google Scholar 

  • Pippenger, N.: On the evaluation of powers and related problems (preliminary version). 17th Annual Symp. on Foundations of Comp. Sci, pp. 258–263. IEEE Computer Society, Los Alamitos (1976)

    Google Scholar 

  • Schönhage, A., Grotefeld, A.F.W., Vetter, E.: Fast Algorithms–A Multitape Turing Machine Implementation. BI Wissenschafts-Verlag, Mannheim (1994)

    MATH  Google Scholar 

  • Schroeppel, R., Orman, H., O’Malley, S., Spatscheck, O.: Fast key exchange with elliptic curve systems. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 43–56. Springer, Heidelberg (1995)

    Google Scholar 

  • Shoup, V.: NTL: A Library for doing number theory. URL: http://shoup.net/ntl/

  • Sun Corporation’s Elliptic Curve Cryptography contributions to OpenSSL. Available at http://research.sun.com/projects/crypto/

  • Weimerskirch, A., Stebila, D., Shantz, S.C.: Generic GF(2m) Arithmetic in Software and its Application to ECC. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 79–92. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  • Wollinger, T.: Software and Hardware Implementation of Hyperelliptic Curve Cryptosystems. Ph.D. Thesis, Ruhr-Universität Bochum, Germany (2004)

    Google Scholar 

  • Wollinger, T., Pelzl, J., Paar, C.: Cantor versus Harley: Optimization and Analysis of Explicit Formulae for Hyperelliptic Curve Cryptosystems. IEEE Transactions on Computers (To appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Claude Carlet Berk Sunar

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avanzi, R., Thériault, N. (2007). Effects of Optimizations for Software Implementations of Small Binary Field Arithmetic. In: Carlet, C., Sunar, B. (eds) Arithmetic of Finite Fields. WAIFI 2007. Lecture Notes in Computer Science, vol 4547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73074-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73074-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73073-6

  • Online ISBN: 978-3-540-73074-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics