[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evolutionary Combining of Basis Function Neural Networks for Classification

  • Conference paper
Bio-inspired Modeling of Cognitive Tasks (IWINAC 2007)

Abstract

The paper describes a methodology for constructing a possible combination of different basis functions (sigmoidal and product) for the hidden layer of a feed forward neural network, where the architecture, weights and node typology are learned based on evolutionary programming. This methodology is tested using simulated Gaussian data set classification problems with different linear correlations between input variables and different variances. It was found that combined basis functions are the more accurate for classification than pure sigmoidal or product-unit models. Combined basis functions present competitive results which are obtained using linear discriminant analysis, the best classification methodology for Gaussian data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Minsky, M., Papert, S.: Perceptrons. MIT Press, Cambridge (1969)

    MATH  Google Scholar 

  2. Martínez-Estudillo, A., Martínez-Estudillo, F.J., Hervás-Martínez, C., García-Pedrajas, N.: Evolutionary product unit based neural networks for regression. Neural Networks 19, 477–486 (2006)

    Article  MATH  Google Scholar 

  3. Cybenko, G.: Aproximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems 2, 302–366 (1989)

    Article  MathSciNet  Google Scholar 

  4. Leshno, M., Lin, V.L., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomical activation can approximate any function. Neural Networks 6, 861–867 (1993)

    Article  Google Scholar 

  5. Sankar, A., Mammone, R.: Growing and pruning neural tree networks. IEEE Trans. on Computers 3, 291–299 (1993)

    Article  Google Scholar 

  6. Donoho, D.: Projection based in approximation and a duality with kernel methods. Annals Statistics 17, 58–106 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lee, Y.C., Doolen, G., Chen, H., Sun, G., Maxwell, T., Lee, H., Giles, C.L.: Machine learning using a higher order correlation network. Physica D: Nonlinear Phenomena 22, 276–306 (1986)

    MathSciNet  Google Scholar 

  8. Rumelhart, D.E., McClelland, J.L., the PDP Research Group: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1: Foundations. MIT Press, Cambridge (1986)

    Google Scholar 

  9. Pao, Y.: Adaptive Pattern Recognition and Neural Networks. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  10. Salinas, E., Abbott, L.: A model of multiplicative neural responses in parietal cortex. Proc. Natl Acad. Sci. 93, 11956–11961 (1996)

    Article  Google Scholar 

  11. Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Networks 8, 694–713 (1997)

    Article  Google Scholar 

  12. García, N., Hervás, C., Munoz, J.: Covnet: Cooperative coevolution of neural networks. IEEE Transactions on Neural Networks 14, 575–596 (2003)

    Article  Google Scholar 

  13. Otten, R.H.J.M., van Ginneken, L.P.P.P.: The annealing algorithm. Kluwer, Boston (1989)

    Google Scholar 

  14. Numerical Technologies Incorporated Jingumae, Shibuya-ku, Tokio: NtRand Version 2.01 (2003)

    Google Scholar 

  15. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira José R. Álvarez

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Hervás, C., Martínez, F., Carbonero, M., Romero, C., Fernández, J.C. (2007). Evolutionary Combining of Basis Function Neural Networks for Classification. In: Mira, J., Álvarez, J.R. (eds) Bio-inspired Modeling of Cognitive Tasks. IWINAC 2007. Lecture Notes in Computer Science, vol 4527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73053-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73053-8_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73052-1

  • Online ISBN: 978-3-540-73053-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics