[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Context Data to Improve Association in Visual Tracking Systems

  • Conference paper
Nature Inspired Problem-Solving Methods in Knowledge Engineering (IWINAC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4528))

  • 1130 Accesses

Abstract

A key aspect in visual surveillance systems is robust movement segmentation, which is still a difficult and unresolved problem. In this paper, we propose an architecture based on a two-layer image-processing modules: General Tracking Layer (GTL) and Context Layer (CL). GTL describe a generic multipurpose tracking process for video-surveillance systems. CL is designed as a symbolic reasoning system that manages the symbolic interface data between GTL modules in order to asses a specific situation and take the appropriate decision about visual data association. Our architecture has been used to improve the association process of a tracking system and tested in two different scenarios to show the advantages in improved performance and output continuity.

Funded by CICYT TEC2005-07186, CAM 15 MADRINET S- 0505/TIC/0255 and IMSERSO AUTOPIA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Patricio, M.A., Carbó, J., Pérez, O., García, J., Molina, J.M.: Multi-agent framework in visual sensor networks. EURASIP Journal on Advances in Signal Processing (2007), doi:10.1155/2007/98639

    Google Scholar 

  2. Kumar, P., Ranganath, S., Sengupta, K., Weimin, H.: Co-operative multi-target tracking and classification. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 376–389. Springer, Heidelberg (2004)

    Google Scholar 

  3. Pérez, Ó., Piccardi, M., García, J., Patricio, M.Á., Molina, J.M.: Comparison Between Genetic Algorithms and the Baum-Welch Algorithm in Learning HMMs for Human Activity Classification. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 399–406. Springer, Heidelberg (2007)

    Google Scholar 

  4. Pérez, O., Patricio, M.A., García, J., Molina, J.M.: Improving the segmentation stage of a pedestrian tracking video-based system by means of evolution strategies. In: 8th European Workshop on Evolutionary Computation in Image Analysis and Signal Processing, EvoIASP 2006, Budapest, Hungary (April 2006)

    Google Scholar 

  5. Cox, I.J., Hingorani, S.L.: An efficient implementation of reid’s multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 18(2), 138–150 (1996)

    Article  Google Scholar 

  6. Haritaoglu, I., Harwood, D., David, L.S.: W4: Real-time surveillance of people and their activities. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 809–830 (2000)

    Article  Google Scholar 

  7. Kim, E.Y., Park, S.H.: Automatic video segmentation using genetic algorithms. Pattern Recogn. Lett. 27(11), 1252–1265 (2006)

    Article  Google Scholar 

  8. Garcia, J., Molina, J.M., Besada, J.A., Portillo, J.I.: A multitarget tracking video system based on fuzzy and neuro-fuzzy techniques. EURASIP Journal on Applied Signal Processing 14, 2341–2358 (2005)

    Article  Google Scholar 

  9. Lienard, B., Desurmont, X., Barrie, B., Delaigle, J.: Real-time high-level video understanding using data warehouse. In: Real-Time Image Processing 2006, Valencia, España (February 2006)

    Google Scholar 

  10. Cucchiara, R.: Multimedia surveillance systems. In: VSSN ’05: Proceedings of the third ACM international workshop on Video surveillance & sensor networks, pp. 3–10. ACM Press, New York (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira José R. Álvarez

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Sánchez, A.M., Patricio, M.A., García, J., Molina, J.M. (2007). Context Data to Improve Association in Visual Tracking Systems. In: Mira, J., Álvarez, J.R. (eds) Nature Inspired Problem-Solving Methods in Knowledge Engineering. IWINAC 2007. Lecture Notes in Computer Science, vol 4528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73055-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73055-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73054-5

  • Online ISBN: 978-3-540-73055-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics