[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

LoD-Based Locomotion Engine for Game Characters

  • Conference paper
Technologies for E-Learning and Digital Entertainment (Edutainment 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4469))

  • 3050 Accesses

Abstract

Inspired by ideas from research on geometric and motion levels of detail, we generalize LoD to combine all currently novel techniques on real-time human locomotion generation. Learn from fruitful research on key-framed kinematic methods, physically-based approaches, motion capture data reuse and action synthesis of reactive articulated characters, we design and implement a tentative but viable LoD scheduler. We also developed a data-driven on-line locomotion generation system base on freely-available motion library by integrating this LoD transition scheduler into popular graphics and dynamics game engine. This paper will then give a brief overview on our experimental results and discussion on future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zordan, V.B., Majkowska, A., Chiu, B., Fast, M.: Dynamic Response for Motion Capture Animation. ACM Trans. Graph 24(3), 697–701 (2005)

    Article  Google Scholar 

  2. Niederberger, C.B.: Behavior Modeling and Real-Time Simulation for Autonomous Agents using Hierarchies and Level-of-Detail. Ph. D dissertation of the Swiss Federal Institute of Technology (2005)

    Google Scholar 

  3. Hoppe, H.: Smooth View-Dependent Level-of-Detail Control and its Application to Terrain Rendering. In: IEEE Proceedings of the conference on Visualization ’98, pp. 35-42 (1998)

    Google Scholar 

  4. Dingliana, J., Sullivan, C.O.: Levels of Detail in Physically-based Real-time Animation. ERCIM News (special issue on computer graphics and visualization) 24, 43–44 (2001)

    Google Scholar 

  5. McDonnell, R., Dobbyn, S., Sullivan, C.O.: LoD Human Representations: A Comparative Study. In: Proceedings of the First International Workshop on Crowd Simulation (V-CROWDS ’05) (2005)

    Google Scholar 

  6. Sullivan, C.O., Cassell, J., Vilhjalmsson, H., Dingliana, J., Dobbyn, S., McNamee, B., Peters, C., Giang, T.: Levels of Detail for Crowds and Groups. Computer Graphics Forum 21 (2002)

    Google Scholar 

  7. Carlson, D.A., Hodgins, J.K.: Simulation Levels of Detail for Real-time Animation. In: Proceedings of the conference on Graphics interface ’97, pp. 1–8 (1997)

    Google Scholar 

  8. Brogan, D.C., Hodgins, J.K.: Simulation Level of Detail for Multiagent Control. In: Proceedings of the first international joint conference on Autonomous agents and multiagent systems: part 1, pp. 199–206 (2002)

    Google Scholar 

  9. Giang, T., Mooney, R., Peters, C., Sullivan, C.O.: ALOHA - Adaptive Level of Detail for Human Animation Towards a new framework. Short papers of Eurographics 2000(2000)

    Google Scholar 

  10. Reich, B.D.: An Architecture for Behavioral Locomotion. Ph. D dissertation of University of Pennsylvania (1997)

    Google Scholar 

  11. Park, S.I., Shin, H.J., Kim, T.H., Shin, S.Y.: On-line Motion Blending for Real Time Locomotion Generation. Comp. Anim. Virtual Worlds (CASA) 15, 125–138 (2004)

    Article  Google Scholar 

  12. Glardon, P.G., Boulic, R., Thalmann, D.: A Coherent Locomotion Engine Extrapolating Beyond Experimental Data. CASA, pp. 73–84 (2004)

    Google Scholar 

  13. Tang, B., Pan, Z., Zheng, L., Zhang, M.: Interactive Generation of Falling Motions. Comp. Anim. Virtual Worlds (CASA) 17, 271–279 (2006)

    Article  Google Scholar 

  14. Sun, H.C., Metaxas, D.N.: Automating Gait Generation. Proc. Siggraph ’01 35, 261–270 (2001)

    Article  Google Scholar 

  15. Arikan, O., Forsyth, D.A.: Interactive Motion Generation from Examples. In: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pp. 483–490 (2002)

    Google Scholar 

  16. Pilgrim, S.J., Aguado, A., Mitchell, K., Steed, A.: Progressive Skinning for Video Game Character Animations. Sketches presented at Siggraph ’06 (2006)

    Google Scholar 

  17. Xiao, J., Zhuang, Y., Yang, T., Wu, F.: An Efficient Keyframe Extraction from Motion Capture Data. In: Nishita, T., Peng, Q., Seidel, H.-P. (eds.) CGI 2006. LNCS, vol. 4035, pp. 494–501. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Kwon, T., Shin, S.Y.: Motion Modeling for On-line Locomotion Synthesis. In: Eurographics/ACM Siggraph Symposium on Computer Animation, pp. 29–38 (2005)

    Google Scholar 

  19. Glardon, P.: On-line Locomotion Synthesis for Virtual Humans. Ph. D dissertation of EPFL (2006)

    Google Scholar 

  20. Rose, C., Bodenheimer, B., Cohen, M.F.: Verbs and Adverbs: Multidimensional Motion Interpolation Using Radial Basis Functions. IEEE Computer Graphics and Application 18(5), 532–540 (1998)

    Article  Google Scholar 

  21. Kovar, L., Gleicher, M., Pighin, F.: Motion Graphs. Proceedings of Siggraph ’02 21(3), 3473–3482 (2002)

    Google Scholar 

  22. Wrotek, P., Jenkins, O.C., McGuire, M.: Dynamo: Dynamic, Data-driven Character Control with Adjustable Balance. In: Proceedings of the 2006 ACM Siggraph symposium on Videogames, pp. 61–70. ACM Press, New York (2006)

    Google Scholar 

  23. Safonova, A., Hodgins, J.K., Pollard, N.S.: Synthesizing Physically Realistic Human Motion in Low-Dimensional, Behavior-Specific Spaces. Proceedings of the 2004 Siggraph 23(3), 3514–3521 (2004)

    Google Scholar 

  24. Kong, D., Xia, T.: Motion Level of Detail for Real-time Human Animation. Journal of Beijing University of Technology 32(5), 5419–5423 (2006)

    Google Scholar 

  25. Mandel, M.J.: Versatile and Interactive Virtual Humans: Hybrid use of Data-Driven and Dynamics-Based Motion Synthesis. Master thesis of Carnegie Mellon University (2004)

    Google Scholar 

  26. Shapiro, A., Pighin, F., Faloutsos, P.: Hybrid Control for Interactive Character Animation. In: Pacific Graphics, pp. 455–461(2003)

    Google Scholar 

  27. Tang, B., Pan, Z., Zheng, L., Zhang, M.: Simulating Reactive Motions for Motion Capture Animation. In: Nishita, T., Peng, Q., Seidel, H.-P. (eds.) CGI 2006. LNCS, vol. 4035, pp. 530–537. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Tang, B.: Study on Generating Reactive Motions for Human Animation. Ph. D dissertation of Zhejiang University (2006)

    Google Scholar 

  29. Zheng, L.: Study on Application of Motion Captured Data. Master thesis of Zhejiang University (2006)

    Google Scholar 

  30. Ge, Y., Pan, Z., Xu, W.: Motion Transition with Balance Control. Journal of Image and Graphics of China 7, 901–905 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kin-chuen Hui Zhigeng Pan Ronald Chi-kit Chung Charlie C. L. Wang Xiaogang Jin Stefan Göbel Eric C.-L. Li

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Lin, Z., Pan, Z. (2007). LoD-Based Locomotion Engine for Game Characters. In: Hui, Kc., et al. Technologies for E-Learning and Digital Entertainment. Edutainment 2007. Lecture Notes in Computer Science, vol 4469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73011-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73011-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73010-1

  • Online ISBN: 978-3-540-73011-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics