Abstract
We study computer virology from an abstract point of view. Viruses and worms are self-replicating programs, whose constructions are essentially based on Kleene’s second recursion theorem. We show that we can classify viruses as solutions of fixed point equations which are obtained from different versions of Kleene’s second recursion theorem. This lead us to consider four classes of viruses which various polymorphic features. We propose to use virus distribution in order to deal with mutations.
Topics covered. Computability theoretic aspects of programs, computer virology.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adleman, L.: An abstract theory of computer viruses. In: Vulkov, L.G., Waśniewski, J., Yalamov, P. (eds.) NAA 2000. LNCS, vol. 403, Springer, Heidelberg (1988)
Blum, M.: A machine-independent theory of the complexity of recursive functions. Journal of the Association for Computing Machinery 14(2), 322–336 (1967)
Bonfante, G., Kaczmarek, M., Marion, J.-Y.: Toward an abstract computer virology. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 579–593. Springer, Heidelberg (2005)
Bonfante, G., Kaczmarek, M., Marion, J.-Y.: On abstract computer virology from a recursion-theoretic perspective. Journal in Computer Virology, 1(3-4) (2006)
Case, J.: Periodicity in generations of automata. Theory of Computing Systems 8(1), 15–32 (1974)
Chess, D., White, S.: An undetectable computer virus. In: Proceedings of the 2000 Virus Bulletin Conference (VB2000) (2000)
Cohen, F.: Computer Viruses. PhD thesis, University of Southern California (January 1986)
Cohen, F.: On the implications of computer viruses and methods of defense. Computers and Security 7, 167–184 (1988)
Filiol, E.: Computer Viruses: from Theory to Applications. Springer, Heidelberg (2005)
Hansen, T., Nikolajsen, T., Träff, J., Jones, N.: Experiments with implementations of two theoretical constructions. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 119–133. Springer, Heidelberg (1989)
Jones, N.: Computer implementation and applications of kleene’s S-m-n and recursive theorems. In: Moschovakis, Y.N. (ed.) Lecture Notes in Mathematics, Logic From Computer Science, pp. 243–263. Springer, Heidelberg (1991)
Jones, N.: Constant Time Factors Do Matter. MIT Press, Cambridge, MA, USA (1997)
Kleene, S.: Introduction to Metamathematics. Van Nostrand (1952)
Ludwig, M.: The Giant Black Book of Computer Viruses. American Eagle Publications (1998)
Moss, L.: Recursion theorems and self-replication via text register machine programs. In: EATCS bulletin (2006)
Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw Hill, New York (1967)
Smullyan, R.: Recursion Theory for Metamathematics. Oxford University Press, Oxford (1993)
Smullyan, R.: Diagonalization and Self-Reference. Oxford University Press, Oxford (1994)
Thompson, K.: Reflections on trusting trust. Communications of the Association for Computing Machinery 27(8), 761–763 (1984)
von Neumann, J.: Theory of Self-Reproducing Automata (edited and completed by A.W.Burks). University of Illinois Press, Urbana, Illinois (1966)
Zuo, Z., Zhou, M.: Some further theoretical results about computer viruses. The Computer Journal 47(6), 627–633 (2004)
Zuo, Z., Zhu, Q.-x., Zhou, M.-t.: On the time complexity of computer viruses. IEEE Transactions on information theory 51(8), 2962–2966 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bonfante, G., Kaczmarek, M., Marion, JY. (2007). A Classification of Viruses Through Recursion Theorems. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-73001-9_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73000-2
Online ISBN: 978-3-540-73001-9
eBook Packages: Computer ScienceComputer Science (R0)