Abstract
A jump inversion theorem for the degree spectra is presented. For a structure which degree spectrum is a subset of the jump spectrum of a structure , a structure is constructed as a Marker’s extension of such that the jump spectrum of is exactly the degree spectrum of and the degree spectrum of is a subset of the degree spectrum of .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ash, C.J., Jockush, C., Knight, J.F.: Jumps of orderings. Trans. Amer. Math. Soc. 319, 573–599 (1990)
Coles, R., Downey, R., Slaman, T.: Every set has a least jump enumeration. Bulletin London Math. Soc 62, 641–649 (2000)
Cooper, S.B.: Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ 2 sets are dense. J. Symbolic Logic 49, 503–513 (1984)
Downey, R.G., Knight, J.F.: Orderings with αth jump degree 0(α). Proc. Amer. Math. Soc. 114, 545–552 (1992)
Gavryushkin, A.N.: On complexity of Ehrenfeucht Theories with computable model. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J. (eds.) Logical Approaches to Computational barriers CiE2006, University of Wales Swansea, Report Series, No. CSR 7-2006, pp. 105–108 (2006)
Goncharov, S., Khoussainov, B.: Complexity of categorical theories with computable models. Algbra and Logic 43(6), 365–373 (2004)
Knight, J.F.: Degrees coded in jumps of orderings. J. Symbolic Logic 51, 1034–1042 (1986)
Marker, D.: Non Σ n -axiomatizable almost strongly minimal theories. J. Symbolic Logic 54(3), 921–927 (1989)
Richter, L.J.: Degrees of structures. J. Symbolic Logic 46, 723–731 (1981)
Soskov, I.N.: A jump inversion theorem for the enumeration jump. Arch. Math. Logic 39, 417–437 (2000)
Soskov, I.N.: Degree spectra and co-spectra of structures. Ann. Univ. Sofia 96, 45–68 (2004)
Soskov, I.N.: The Jump Spectra are Spectra (in preparation)
Soskova, A.A.: Minimal pairs and quasi-minimal degrees for the joint spectra of structures. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 451–460. Springer, Heidelberg (2005)
Soskova, A.A.: Relativized degree spectra. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 546–555. Springer, Heidelberg (2006)
Soskova, A.A., Soskov, I.N.: Co-spectra of joint spectra of structures. Ann. Univ. Sofia 96, 35–44 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Soskova, A.A. (2007). A Jump Inversion Theorem for the Degree Spectra. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_76
Download citation
DOI: https://doi.org/10.1007/978-3-540-73001-9_76
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73000-2
Online ISBN: 978-3-540-73001-9
eBook Packages: Computer ScienceComputer Science (R0)