[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Jump Inversion Theorem for the Degree Spectra

  • Conference paper
Computation and Logic in the Real World (CiE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4497))

Included in the following conference series:

Abstract

A jump inversion theorem for the degree spectra is presented. For a structure which degree spectrum is a subset of the jump spectrum of a structure , a structure is constructed as a Marker’s extension of such that the jump spectrum of is exactly the degree spectrum of and the degree spectrum of is a subset of the degree spectrum of .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ash, C.J., Jockush, C., Knight, J.F.: Jumps of orderings. Trans. Amer. Math. Soc. 319, 573–599 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Coles, R., Downey, R., Slaman, T.: Every set has a least jump enumeration. Bulletin London Math. Soc 62, 641–649 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Cooper, S.B.: Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ 2 sets are dense. J. Symbolic Logic 49, 503–513 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Downey, R.G., Knight, J.F.: Orderings with αth jump degree 0(α). Proc. Amer. Math. Soc. 114, 545–552 (1992)

    MathSciNet  MATH  Google Scholar 

  • Gavryushkin, A.N.: On complexity of Ehrenfeucht Theories with computable model. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J. (eds.) Logical Approaches to Computational barriers CiE2006, University of Wales Swansea, Report Series, No. CSR 7-2006, pp. 105–108 (2006)

    Google Scholar 

  • Goncharov, S., Khoussainov, B.: Complexity of categorical theories with computable models. Algbra and Logic 43(6), 365–373 (2004)

    Article  Google Scholar 

  • Knight, J.F.: Degrees coded in jumps of orderings. J. Symbolic Logic 51, 1034–1042 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Marker, D.: Non Σ n -axiomatizable almost strongly minimal theories. J. Symbolic Logic 54(3), 921–927 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Richter, L.J.: Degrees of structures. J. Symbolic Logic 46, 723–731 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Soskov, I.N.: A jump inversion theorem for the enumeration jump. Arch. Math. Logic 39, 417–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Soskov, I.N.: Degree spectra and co-spectra of structures. Ann. Univ. Sofia 96, 45–68 (2004)

    MathSciNet  MATH  Google Scholar 

  • Soskov, I.N.: The Jump Spectra are Spectra (in preparation)

    Google Scholar 

  • Soskova, A.A.: Minimal pairs and quasi-minimal degrees for the joint spectra of structures. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 451–460. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Soskova, A.A.: Relativized degree spectra. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 546–555. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Soskova, A.A., Soskov, I.N.: Co-spectra of joint spectra of structures. Ann. Univ. Sofia 96, 35–44 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soskova, A.A. (2007). A Jump Inversion Theorem for the Degree Spectra. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73001-9_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73000-2

  • Online ISBN: 978-3-540-73001-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics