[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computability and Incomputability

  • Conference paper
Computation and Logic in the Real World (CiE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4497))

Included in the following conference series:

Abstract

The conventional wisdom presented in most computability books and historical papers is that there were several researchers in the early 1930’s working on various precise definitions and demonstrations of a function specified by a finite procedure and that they should all share approximately equal credit. This is incorrect. It was Turing alone who achieved the characterization, in the opinion of Gödel. We also explore Turing’s oracle machine and its analogous properties in analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Church, A.: An unsolvable problem of elementary number theory. American J. of Math. 58, 345–363 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  2. Church, A.: Review of Turing 1936. J. Symbolic Logic 2(1), 42–43 (1937)

    Google Scholar 

  3. Davis, M.: The Undecidable. Basic Papers on Undecidable Propositions, Unsolvable Problems, and Computable Functions. Raven Press, Hewlett, New York (1965)

    Google Scholar 

  4. Davis, M.: Why Gödel did not have Church’s Thesis. Information and Control 54, 3–24 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gandy, R.: Church’s thesis and principles for mechanisms. In: The Kleene Symposium, North-Holland, pp. 123–148 (1980)

    Google Scholar 

  6. Gandy, R.: The confluence of ideas in 1936. In: Herken, pp. 55–111 (1988)

    Google Scholar 

  7. Gödel, K.: Über formal unentscheidbare sätze der Principia Mathematica und verwandter systeme. I, Monatsch. Math. Phys. vol. 38 pp. 173–178 (1931) (English trans. in Davis 1965, pp. 4–38, and in van Heijenoort, pp. 592–616 (1967)

    Google Scholar 

  8. Gödel, K.: On undecidable propositions of formal mathematical systems, Notes by Kleene, S.C., Rosser, J.B. (eds.) on lectures at the Institute for Advanced Study, Princeton, New Jersey, 30 pp (Reprinted in Davis 1965 [3, 39–74] (1934)

    Google Scholar 

  9. Gödel, K.: Undecidable diophantine propositions. In: Gödel, pp. 156–175 (1995)

    Google Scholar 

  10. Gödel, K.: Remarks before the Princeton bicentennial conference of problems in mathematics, Reprinted in: Davis 1965 [3], pp. 84–88 (1946)

    Google Scholar 

  11. Gödel, K.: Some basic theorems on the foundations of mathematics and their implications. In: Gödel pp. 304–323 (This was the Gibbs Lecture delivered by Gödel on December 26, 1951 to the Amer. Math. Soc.) (1995)

    Google Scholar 

  12. Gödel, K.: Postscriptum to Gödel 1931, written in 1946, printed in Davis, pp. 71–73 (1965)

    Google Scholar 

  13. Hilbert, D., Ackermann, W.: Grundzüge der theoretischen Logik. In (English translation of 1938 edition, Chelsea, New York, 1950), Springer, Berlin (1928)

    Google Scholar 

  14. Hodges, A.: Alan Turing: The Enigma, Burnett Books and Hutchinson, London, and Simon and Schuster, New York (1983)

    Google Scholar 

  15. Kleene, S.C.: General recursive functions of natural numbers. Math. Ann. 112, 727–742 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kleene, S.C.: Recursive predicates and quantifiers. Trans. A.M.S. 53, 41–73 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kleene, S.C.: Introduction to Metamathematics, Van Nostrand, New York. Ninth reprint 1988, Walters-Noordhoff Publishing Co., Groningën and North-Holland, Amsterdam (1952)

    Google Scholar 

  18. Kleene, S.C.: Mathematical Logic, London, Sydney. John Wiley and Sons, Inc, New York (1967)

    MATH  Google Scholar 

  19. Kleene, S.C.: Origins of recursive function theory. Annals of the History of Computing 3, 52–67 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kleene, S.C.: Reflections on Church’s Thesis. Notre Dame. Journal of Formal Logic 28, 490–498 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kleene, S.C.: Turing’s analysis of computability, and major applications of it, In: Herken, pp. 17–54 (1988)

    Google Scholar 

  22. Kleene, S.C., Post, E.L.: The upper semi-lattice of degrees of recursive unsolvability. Ann. of Math. 59, 379–407 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  23. Post, E.L.: Finite combinatory processes–formulation, J. Symbolic Logic vol. 1 pp. 103–105 (1936). Reprinted in Davis, pp. 288–291 (1965)

    Google Scholar 

  24. Post, E.L.: Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. vol. 50, pp. 284–316 (1944). Reprinted in Davis, pp. 304–337 (1965)

    Google Scholar 

  25. Sieg, W.: Mechanical procedures and mathematical experience. In: George, A. (ed.) Mathematics and Mind, Oxford Univ. Press, Oxford (1994)

    Google Scholar 

  26. Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets. Springer, Heidelberg (1987)

    Book  MATH  Google Scholar 

  27. Soare, R.I.: Computability and recursion. Bulletin of Symbolic Logic 2, 284–321 (1996)

    Google Scholar 

  28. Soare, R.I.: Extensions, Automorphisms, and Definability, In: Cholak, P., Lempp, S., Lerman, M., Shore, R. (eds.) Computability Theory and its Applications: Current Trends and Open Problems, American Mathematical Society, Contemporary Math. #257, American Mathematical Society, Providence, RI, pps. 279–307 (2000)

    Google Scholar 

  29. Soare, R.I.: Computability Theory and Applications, Springer-Verlag, Heidelberg (to appear)

    Google Scholar 

  30. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. In: Proc. London Math. Soc. ser. 2 vol. 42 (Parts 3 and 4) pp. 230–265 (1936) [Turing, 1937] A correction, ibid. vol. 43, pp. 544–546 (1937)

    Google Scholar 

  31. Turing, A.M.: Systems of logic based on ordinals. In: Proc. London Math. Soc. vol. 45 Part 3 pp. 161–228 (1939) reprinted in Davis, pp. 154–222 (1965)

    Google Scholar 

  32. Zabell, S.L.: Alan Turing and the Central Limit Theorem. American Mathematical Monthly 102(6), 483–494 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soare, R.I. (2007). Computability and Incomputability. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73001-9_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73000-2

  • Online ISBN: 978-3-540-73001-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics