[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Bio-inspired Control Model for Object Manipulation by Humanoid Robots

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

  • 1790 Accesses

Abstract

This paper presents a bio-inspired control model for humanoid robots manipulating objects. Humanoids face several genuine problems: 1) they are not fixed (to the ground) therefore extreme forces generate noisy vibrations on the whole platform (robot body) and 2) rigid control (to avoid dynamic modelling) requires high power to be accurate and dramatically limits their autonomy. We compare a velocity vs a position driven control scheme in the framework of object manipulation. The velocity driven control scheme helps smoother control (reducing the jerks). Furthermore, we use an artificial neural network (RBF) to extract some features of the dynamic model automatically complementing the control scheme. Its performance is evaluated using a real robot platform. Experiments were done using the robot’s arm and trajectory data was collected during different trials manipulating different objects in order to acquire the model and evaluate how to use it to improve control accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vijayakumar, S., Shibata, T., Conradt, J., Schaal, S.: Statistical Learning for Humanoid Robots. Autonomous Robot 1(1), 55–69 (2002)

    Article  Google Scholar 

  2. EU grant SENSOPAC (SENSOrimotor structuring of Perception and Action for emergent Cognition), http://www.sensopac.org

  3. Torres, F.: Control de robots. In: Pomares, J., Gil, P., Puente, S.T., Aracil, R. (eds.) Robots y sistemas sensoriales, 1st edn., pp. 296–317 (2002)

    Google Scholar 

  4. Ollero Baturone, A.: Sensores, Generación de trayectorias. Robótica manipuladores y robots móviles, 1st edn., pp. 166–196, 303–338 (2001)

    Google Scholar 

  5. Smagt, P.V.: Cerebellar control of robot arms. Connection Science 10(3-4), 301–320 (1998)

    Article  Google Scholar 

  6. Kawato, M.: Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9(6), 718–727 (1999)

    Article  Google Scholar 

  7. Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators. In: Robot Motion: Planning and Control. The MIT Press Series in Artificial Intelligence, pp. 419–438. MIT Press, Cambridge (1984)

    Google Scholar 

  8. Roy, J., Whitcomb, L.L.: Adaptive force control of position/velocity controlled robots: theory and experiment. IEEE T. on Robotics and Automation 18, 121–137 (2002)

    Article  Google Scholar 

  9. Apps, R., Garwicz, M.: Anatomical and Physiological Foundations of Cerebellar Information Processing. Nature Reviews Neuroscience 6(4), 297–311 (2005)

    Article  Google Scholar 

  10. Chez, C.: The Cerebellum. In: Kandel, E., Schwartz, J.H., Jessel, T. (eds.) Principles of Neural Science, 3rd edn., pp. 626–645 (1991)

    Google Scholar 

  11. Assad, C., Trujillo, S., Dastoor, S., Xu, L.: Cerebellar Dynamic State Estimation for a Biomorphic Robot Arm. In: IEEE Int. Conf. on Syst., Man and Cybernetics, pp. 877–882 (2005)

    Google Scholar 

  12. Miall, R.C., Keating, J.G., Malkmus, M., Thach, W.T.: Purkinje cell complex spikes are predicted by simple spike activity. Nature Neurosci. 1, 13–15 (1998)

    Article  Google Scholar 

  13. Acelerators sensors. Web site available at: http://www.ikarus-modellbau.de

  14. Lumelsky, V., Shur, M.S., Wagner, S.: Sensitive Skin. IEEE Sensors J. 1, 41–51 (2001)

    Article  Google Scholar 

  15. Celoxica Inc.: Web site and products information available at: http://www.celoxica.com

  16. Hitec Robotics Inc.: Web site and products information available at: http://www.hitecrobotics.com

  17. Mathworks Inc.: Web site available at: http://www.mathworks.com/products/matlab

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tolu, S., Ros, E., Agís, R. (2007). Bio-inspired Control Model for Object Manipulation by Humanoid Robots. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_99

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_99

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics