Abstract
This paper presents a bio-inspired control model for humanoid robots manipulating objects. Humanoids face several genuine problems: 1) they are not fixed (to the ground) therefore extreme forces generate noisy vibrations on the whole platform (robot body) and 2) rigid control (to avoid dynamic modelling) requires high power to be accurate and dramatically limits their autonomy. We compare a velocity vs a position driven control scheme in the framework of object manipulation. The velocity driven control scheme helps smoother control (reducing the jerks). Furthermore, we use an artificial neural network (RBF) to extract some features of the dynamic model automatically complementing the control scheme. Its performance is evaluated using a real robot platform. Experiments were done using the robot’s arm and trajectory data was collected during different trials manipulating different objects in order to acquire the model and evaluate how to use it to improve control accuracy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vijayakumar, S., Shibata, T., Conradt, J., Schaal, S.: Statistical Learning for Humanoid Robots. Autonomous Robot 1(1), 55–69 (2002)
EU grant SENSOPAC (SENSOrimotor structuring of Perception and Action for emergent Cognition), http://www.sensopac.org
Torres, F.: Control de robots. In: Pomares, J., Gil, P., Puente, S.T., Aracil, R. (eds.) Robots y sistemas sensoriales, 1st edn., pp. 296–317 (2002)
Ollero Baturone, A.: Sensores, Generación de trayectorias. Robótica manipuladores y robots móviles, 1st edn., pp. 166–196, 303–338 (2001)
Smagt, P.V.: Cerebellar control of robot arms. Connection Science 10(3-4), 301–320 (1998)
Kawato, M.: Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9(6), 718–727 (1999)
Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators. In: Robot Motion: Planning and Control. The MIT Press Series in Artificial Intelligence, pp. 419–438. MIT Press, Cambridge (1984)
Roy, J., Whitcomb, L.L.: Adaptive force control of position/velocity controlled robots: theory and experiment. IEEE T. on Robotics and Automation 18, 121–137 (2002)
Apps, R., Garwicz, M.: Anatomical and Physiological Foundations of Cerebellar Information Processing. Nature Reviews Neuroscience 6(4), 297–311 (2005)
Chez, C.: The Cerebellum. In: Kandel, E., Schwartz, J.H., Jessel, T. (eds.) Principles of Neural Science, 3rd edn., pp. 626–645 (1991)
Assad, C., Trujillo, S., Dastoor, S., Xu, L.: Cerebellar Dynamic State Estimation for a Biomorphic Robot Arm. In: IEEE Int. Conf. on Syst., Man and Cybernetics, pp. 877–882 (2005)
Miall, R.C., Keating, J.G., Malkmus, M., Thach, W.T.: Purkinje cell complex spikes are predicted by simple spike activity. Nature Neurosci. 1, 13–15 (1998)
Acelerators sensors. Web site available at: http://www.ikarus-modellbau.de
Lumelsky, V., Shur, M.S., Wagner, S.: Sensitive Skin. IEEE Sensors J. 1, 41–51 (2001)
Celoxica Inc.: Web site and products information available at: http://www.celoxica.com
Hitec Robotics Inc.: Web site and products information available at: http://www.hitecrobotics.com
Mathworks Inc.: Web site available at: http://www.mathworks.com/products/matlab
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tolu, S., Ros, E., Agís, R. (2007). Bio-inspired Control Model for Object Manipulation by Humanoid Robots. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_99
Download citation
DOI: https://doi.org/10.1007/978-3-540-73007-1_99
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73006-4
Online ISBN: 978-3-540-73007-1
eBook Packages: Computer ScienceComputer Science (R0)