[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Interconnecting VLSI Spiking Neural Networks Using Isochronous Connections

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

Abstract

This paper presents a network architecture to interconnect mixed-signal VLSI integrate-and-fire neural networks in a way that the timing of the neural network data is preserved. The architecture uses isochronous connections to reserve network bandwidth and is optimized for the small data event packets that have to be exchanged in spiking hardware neural networks. End-to-end delay is reduced to the minimum by retaining 100% throughput. As buffering is avoided wherever possible, the resulting jitter is independent of the number of neural network chips used. This allows to experiment with neural networks of thousands of artificial neurons with a speedup of up to 105 compared to biology. Simulation results are presented. The work focuses on the interconnection of hardware neural networks. In addition to this, the proposed architecture is suitable for any application where bandwidth requirements are known and constant low delay is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. The Neural Simulation Technology (NEST) Initiative (2007), Homepage, http://www.nest-initiative.org

  2. Schemmel, J., Hohmann, S., Meier, K., Schürmann, F.: A mixed-mode analog neural network using current-steering synapses. Analog Integrated Circuits and Signal Processing 38(2-3), 233–244 (2004)

    Article  Google Scholar 

  3. Indiveri, G., Chicca, E., Douglas, R.: A VLSI array of low-power spiking neurons and bistable synapses with spike–timing dependent plasticity. IEEE Transactions on Neural Networks 17(1), 211–221 (2006)

    Article  Google Scholar 

  4. Schemmel, J., Grübl, A., Meier, K., Mueller, E.: Implementing synaptic plasticity in a VLSI spiking neural network model. In: Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN’06), Orlando, IEEE Press, Los Alamitos (2006)

    Google Scholar 

  5. Fieres, J., Grübl, A., Philipp, S., Meier, K., Schemmel, J., Schürmann, F.: A platform for parallel operation of VLSI neural networks. In: Proc. of the 2004 Brain Inspired Cognitive Systems Conference, BICS2004 (2004)

    Google Scholar 

  6. Tanenbaum, A.S.: Computer Networks. Pearson Education Int., London (2004)

    Google Scholar 

  7. Hung, A., Kesidis, G., McKeown, N.: ATM input-buffered switches with guaranteed-rate property. In: Proc. of IEEE ISCC’98, Athens, pp. 331–335 (1998)

    Google Scholar 

  8. Li, S., Ansari, N.: Input-queued switching with QoS guarantees. In: Proceedings of IEEE INFOCOM’99, New York, pp. 1152–1159 (1999)

    Google Scholar 

  9. Xilinx, Inc.: Virtex-II Pro Platform FPGA Handbook (2002), http://www.xilinx.com

  10. Xilinx, Inc.: RocketIO Ttransceiver User Guide (2003), http://www.xilinx.com

  11. Xilinx, Inc.: Xilinx Application Note 670, Minimizing Receiver Elastic Buffer Delay in the Virtex-II Pro RocketIO Transceiver (2003), http://www.xilinx.com

  12. Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4), 251–256 (1979)

    Article  MATH  Google Scholar 

  13. Ehrlich, M., Mayr, C., Eisenreich, H., Henker, S., Srowig, A., Grübl, A., Schemmel, J., Schüffny, R.: Wafer-Scale VLSI implementations of pulse coupled neural networks. In: Proc. of IEEE SSD07, Hammamet, Tunisia (March 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Philipp, S., Grübl, A., Meier, K., Schemmel, J. (2007). Interconnecting VLSI Spiking Neural Networks Using Isochronous Connections. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics