[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tuning L1-SVM Hyperparameters with Modified Radius Margin Bounds and Simulated Annealing

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

Abstract

In the design of support vector machines an important step is to select the optimal hyperparameters. One of the most used estimators of the performance is the Radius-Margin bound. Some modifications of this bound have been made to adapt it to soft margin problems, giving a convex optimization problem for the L2 soft margin formulation. However, it is still interesting to consider the L1 case due to the reduction in the support vector number. There have been some proposals to adapt the Radius-Margin bound to the L1 case, but the use of gradient descent to test them is not possible in some of them because these bounds are not differentiable. In this work we propose to use simulated annealing as a method to find the optimal hyperparameters when the bounds are not differentiable, have multiple local minima or the kernel is not differentiable with respect to its hyperparameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vapnik, N.V.: The Natureof Statistical Learning Theory (1 edn. 1998). Springer, Heidelberg (2000)

    Google Scholar 

  2. Joachims, T.: Estimating the generalization performance of a SVM efficiently. In: Langley, P. (ed.) Proc. of ICML-00, pp. 431–438. Morgan Kaufmann, San Francisco (2000), citeseer.ist.psu.edu/article/joachims99estimating.html

    Google Scholar 

  3. Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector machines. Neural Computation 12(9), 2013–2036 (2000)

    Article  Google Scholar 

  4. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning 46(1), 131–159 (2002)

    Article  MATH  Google Scholar 

  5. Duan, K., Sathiya, S., Poo, A.: Evaluation of simple performance measures for tuning the svm hyperparameters. Neurocomputing 51, 41–59 (2003)

    Article  Google Scholar 

  6. Chung, K.-M., Kao, W.-C., Sun, C.-L., Wang, L.-L., Lin, C.-J.: Radius margin bounds for support vector machines with the rbf kernel. Neural Computation 15, 2643–2681 (2003)

    Article  MATH  Google Scholar 

  7. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  8. Kirkpatrick, S., Gellat, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  9. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)

    Google Scholar 

  10. Ingber, A.L.: Adaptive simulated annealing (asa): Lessons learned. Control and Cybernetics 25(1), 33–54 (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Acevedo, J., Maldonado, S., Siegmann, P., Lafuente, S., Gil, P. (2007). Tuning L1-SVM Hyperparameters with Modified Radius Margin Bounds and Simulated Annealing. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics