[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Perceptive Particle Swarm Optimization: A New Learning Method from Birds Seeking

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

  • 2327 Accesses

Abstract

Particle Swarm Optimization (PSO) is a new nature-inspired evolutionary technique simulated with bird flocking and fish schooling. However, the biological model of standard PSO ignores the different decision process of each bird. In nature, if one bird finds some food, generally, it will continue to fly surrounding this spot to find other food, and vice versa. Inspired by this phenomenon, a new swarm intelligent methodology– perceptive particle swarm optimization is designed, in which each particle can apperceive its current status within the whole swarm, and make a dynamic decision by adjusting its next flying direction. Furthermore, a mutation operator is introduced to avoid unsuitable adjustment. Simulation results show the proposed algorithm is effective and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  2. Eberhart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: Proceedings of 6th International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)

    Google Scholar 

  3. Cui, Z.H., Zeng, J.C., Sun, G.J.: Hybrid Method to Computing Global Minimizers Combined with PSO and BPR. Chinese Journal of Electronic 15, 949–952 (2006)

    Google Scholar 

  4. Eberhart, R.C., Hu, X.: Human Tremor Analysis Using Particle Swarm Optimization. In: Proceedings of the Congress on Evolutionary Computation, pp. 1927–1930 (1999)

    Google Scholar 

  5. Sousa, T., Silva, A., Neves, A.: A Particle Swarm Data Miner. In: Pires, F.M., Abreu, S.P. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, pp. 43–53. Springer, Heidelberg (2003)

    Google Scholar 

  6. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: IEEE International Conference of Evolutionary Computation, pp. 100–104 (1998)

    Google Scholar 

  7. Shi, Y., Eberhart, R.C.: Parameter Selection in Particle Swarm Optimization. In: Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 591–600 (1998)

    Google Scholar 

  8. Shi, Y., Eberhart, R.C.: Emirical Study of Particle Swarm Optimization. In: Proceedings of the Congress on Evolutionary Computation, pp. 1945–1950 (1999)

    Google Scholar 

  9. Suganthan, P.N.: Particle Swarm Optimizer with Neighbourhood Operator. In: Proceedings of the Congress on Evolutionary Computation, pp. 1958–1962 (1999)

    Google Scholar 

  10. Zheng, Y.L., Ma, L.H., Zhang, L.Y., Qian, J.X.: On the Convergence Analysis and Parameter Selection in Particle Swarm Optimization. In: Proceedings of the Second International Conference on Machine Learning and Cybernetics, pp. 1802–1807 (2003)

    Google Scholar 

  11. Cui, Z.H., Zeng, J.C., Sun, G.J.: Using Accelerator Feedback to Improve Performance of Integral-controller Particle Swarm Optimization. In: Proceedings of Fifth IEEE International Conference on Cognitive Informatics, pp. 665–668 (2006)

    Google Scholar 

  12. Yasuda, K., Ide, A., Iwasaki, N.: Adaptive Particle Swarm Optimization. In: Proceedings of IEEE International Conference on System, Man and Cybernetics, pp. 1554–1559 (2003)

    Google Scholar 

  13. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. Computer Graphics 21, 25–34 (1987)

    Article  Google Scholar 

  14. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-Organizing Hierarchical Particle Swarm Opitmizer with Time-Varying Acceleration Coefficients. IEEE Transactions on Evolutionary Computation 8, 240–255 (2004)

    Article  Google Scholar 

  15. Yao, X., Liu, Y., Lin, G.M.: Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation 3, 82–102 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, X., Cui, Z., Zeng, J., Tan, Y. (2007). Perceptive Particle Swarm Optimization: A New Learning Method from Birds Seeking. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_137

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_137

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics