Abstract
Assets Prognostics and Health Management (PHM) is a promising application area for Soft Computing (SC). To better understand PHM requirements, we introduce a decision-making framework in which we analyze PHM decisional tasks. This framework is the cross product of the decision’s time horizon and the domain knowledge used by SC models. Within such a framework, we analyze the progression from simple to annotated lexicon, morphology, syntax, semantics, and pragmatics. We use this metaphor to monitor the leverage of domain knowledge in SC to perform anomaly detection, anomaly identification, failure mode analysis (diagnostics), estimation of remaining useful life (prognostics), on-board control, and off board logistics actions. We illustrate a case study in anomaly detection, which is solved by the construction and fusion of an ensemble of diverse detectors, each of which is based on different SC technologies.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bonissone, P.: The life cycle of a fuzzy knowledge-based classifier. In: Proc. North American Fuzzy Information Processing Society, Chicago, IL, USA, pp. 488–494 (2003)
Bonissone, P.: Development and Maintenance of Fuzzy Models in Financial Applications. In: Lopez-Diaz, M., Gil, M., Grzegorzwski, P., Hyrniewicz, O., Lawry, J. (eds.) Soft Methodology and Random Information Systems, Springer, Heidelberg (2004)
Bonissone, P., Varma, A., Aggour, K.: An Evolutionary Process for Designing and Maintaining a Fuzzy Instance-based Model (FIM). In: Proc. First Workshop on Genetic Fuzzy Systems (GFS’05), Granada, Spain (2005)
Patterson, A., Bonissone, P., Pavese, M.: Six Sigma Quality Applied Throughout the Lifecycle of and Automated Decision System. Journal Quality and Reliability Engineering International 21, 275–292 (2005)
Bonissone, P.: Knowledge and Time: A Framework for Soft Computing Applications in Prognostics and Health Management (PHM). In: Proc. IPMU 2006, Paris, France (2006)
Bonissone, P., Goebel, K., Iyer, N.: Knowledge and Time: Selected Case Studies in Prognostics and Health Management (PHM). In: Proc. IPMU 2006, Paris, France (2006)
Searle, J.R.: Speech Acts. An Essay in the Philosophy of Language. Cambridge University Press, Cambridge (1969)
Kuncheva, L., Whitaker, C.J.: Measures of Diversity in Classifier Ensembles. Machine Learning 51, 181–207 (2003)
Roli, F., Giacinto, G., Vernazza, G.: Methods for Designing Multiple Classifier Systems. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 78–87. Springer, Heidelberg (2001)
Markou, M., Singh, S.: Novelty detection: A review - Part 1: Statistical approaches. Signal Processing 83(12), 2481–2497 (2003)
Markou, M., Singh, S.: Novelty detection: A review - Part 2: Neural network based approaches. Signal Processing 83(12), 2499–2521 (2003)
Cilibrasi, R., Vitany, P.: Clustering by Compression. IEEE Transactions on Information Theory 51(4), 1523–1545 (2005)
Li, M., Chen, X., Ma, B., Vitany, P.: The Similarity Metric. IEEE Transactions on Information Theory 50(12) (2004)
Cilibrasi, R., Vitany, P., de Wolf, R.: Algorithmic Clustering of Music Based on String Compression. Computer Music Journal 28(4), 49–67 (2004)
Varma, A., Bonissone, P., Yan, W., Eklund, N., Goebel, K., Yier, N., Bonissone, S.: Anomaly Detection using Non-Parametric information. In: Proceedings of GT2007 ASME Turbo Expo 2007: Power for Land, Sea and Air, Montreal, Canada (2007)
Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications of the self-organizing map. Proceedings of the IEEE 84(10), 1358–1384 (1996)
Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth, Belmont (1984)
Shi, T., Horvath, S.: Unsupervised Learning with Random Forest Predictors. Journal of Computational and Graphical Statistics 15(1), 118–138(21) (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bonissone, P.P., Iyer, N. (2007). Soft Computing Applications to Prognostics and Health Management (PHM): Leveraging Field Data and Domain Knowledge. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_112
Download citation
DOI: https://doi.org/10.1007/978-3-540-73007-1_112
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73006-4
Online ISBN: 978-3-540-73007-1
eBook Packages: Computer ScienceComputer Science (R0)