[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Natural Computing Series ((NCS))

Abstract

Genetic Algorithms have been seen as search procedures that can quickly locate high performance regions of vast and complex search spaces, but they are not well suited for fine-tuning solutions, which are very close to optimal ones. However, genetic algorithms may be specifically designed to provide an effective local search as well. In fact, several genetic algorithm models have recently been presented with this aim. In this chapter, we call these algorithms Local Genetic Algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beasley JE (1998) Heuristic algorithms for the unconstrained binary quadratic programming problem. Tech. Rep., Management School, Imperial College, London, UK.

    Google Scholar 

  2. Beasley JE (1990) The Journal of the Operational Research Society 41(11):1069–1072. (http://people.brunel.ac.uk/ mastjjb/jeb/info.html)

    Google Scholar 

  3. Blum C, Roli A (2003) ACM Computing Surveys 35(3):268–308

    Google Scholar 

  4. Boese KD, Muddu S (1994) Operations Research Letters 16:101–113

    Google Scholar 

  5. De Jong K, Potter MA, Spears WM (1997) Using problem generators to explore the effects of epistasis. In: Bäck T (ed) Proc. of the Seventh International Conference on Genetic Algorithms. Morgan Kaufmann

    Google Scholar 

  6. Dietzfelbinger M, Naudts B, Van Hoyweghen C, Wegener I (2003) IEEE Transactions on Evolutionary Computation 7(5):417–423

    Google Scholar 

  7. Elliott L, Ingham DB, Kyne AG, Mera NS, Pourkashanian M, Wilson CW (2004) An informed operator based genetic algorithm for tuning the reaction rate parameters of chemical kinetics mechanisms. In: Deb K, Poli R, Banzhaf W, Beyer H-G, Burke EK, Darwen PJ, Dasgupta D, Floreano D, Foster JA, Harman M, Holland O, Lanzi PL, Spector L, Tettamanzi A, Thierens D, Tyrrell AM (eds) Proc. of the Genetic and Evolutionary Computation Conference, LNCS 3103. Springer, Berlin Heidelberg

    Google Scholar 

  8. Feo T, Resende M (1995) Journal of Global Optimization 6:109–133.

    Google Scholar 

  9. Fernandes C, Rosa A (2001) A study on non-random mating and varying population size in genetic algorithms using a royal road function. Proc. of the 2001 Congress on Evolutionary Computation, IEEE Press, Piscataway, New Jersey

    Google Scholar 

  10. Festa P, Pardalos PM, Resende MGC, Ribeiro CC (2002) Optimization Methods and Software 17(6):1033–1058

    Google Scholar 

  11. Fischer I, Gruber G, Rendl F, Sotirov R (2006) Mathematical Programming 105(2–3): 451–469

    Google Scholar 

  12. García-Martínez C, Lozano M, Molina D (2006) A Local Genetic Algorithm for Binary-coded Problems. In: Runarsson TP, Beyer H-G, Burke E, Merelo-Guervós JJ, Whitley LD, Yao X (eds) 9th International Conference on Parallel Problem Solving from Nature, LNCS 4193. Springer, Berlin Heidelberg

    Google Scholar 

  13. García-Martínez C, Lozano M, Herrera F, Molina D, Sánchez AM (2007) Global and local real-coded genetic algorithms based on parent-centric crossover operators. European Journal of Operational Research. In Press, Corrected Proof, Available online 18 October 2006

    Google Scholar 

  14. Gendreau M, Potvin J-Y (2005) Annals of Operations Research 140(1):189–213

    Google Scholar 

  15. Glover F, Laguna M (1999) Operational Research Society Journal 50(1):106–107

    Google Scholar 

  16. Goldberg DE, Korb B, Deb K (1989) Complex Systems 3:493–530

    Google Scholar 

  17. Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  18. Gulati VP, Gupta SK, Mittal AK (1984) European Journal of Operational Research 15:121–125

    Google Scholar 

  19. Harik G (1995) Finding multimodal solutions using restricted tournament selection. In: Eshelman LJ (ed) Proc. of the 6th International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, California

    Google Scholar 

  20. Helmberg C, Rendl F (2000) Siam Journal of Optimization 10(3):673–696

    Google Scholar 

  21. Herrera F, Lozano M, Verdegay JL (1998) Artificial Intelligence Revue 12(4):265–319

    Google Scholar 

  22. Herrera F, Lozano M (2000) IEEE Trans. on Evolutionary Computation 4(1):43–63

    Article  Google Scholar 

  23. Herrera F, Lozano M, Sánchez AM (2003) International Journal of Intelligent Systems 18(3):309–338

    Google Scholar 

  24. Holland JH (1992) Adaptation in Natural and Artificial Systems. The MIT Press Cambridge, MA, USA

    Google Scholar 

  25. Karp RM (1972) Reducibility among combinatorial problems. In: Miller R, Thatcher J (eds), Complexity of Computer Computations. Plenum Press, New York

    Google Scholar 

  26. Katayama K, Tani M, Narihisa H (2000) Solving large binary quadratic programming problems by effective genetic local search algorithm. In: Whitley D, Goldberg D, Cantu-Paz E, Spector L, Parmee I, Beyer H-G (eds) Proc. of the 2000 Genetic and Evolutionary Computation Conference. Morgan Kaufmann

    Google Scholar 

  27. Katayama K, Narihisa H (2001) Trans. IEICE (A) J84-A(3):430–435

    Google Scholar 

  28. Kauffman SA (1989) Lectures in the Sciences of Complexity 1:527–618

    Google Scholar 

  29. Kazarlis SA, Papadakis SE, Theocharis JB, Petridis V (2001) IEEE Transactions on Evolutionary Computation 5(3):204–217

    Google Scholar 

  30. Lourenço HR, Martin O, Stützle T (2002) Iterated local search. In: Glover F, Kochenberger G (eds) Handbook of Metaheuristics. Kluwer Academic, Boston, MA, USA

    Google Scholar 

  31. Lozano M, Herrera F, Krasnogor N, Molina D (2004) Evolutionary Computation Journal 12(3):273–302

    Google Scholar 

  32. Meloni C, Naso D, Turchiano B (2003) Multi-objective evolutionary algorithms for a class of sequencing problems in manufacturing environments. Proc. of the IEEE International Conference on Systems, Man and Cybernetics 1

    Google Scholar 

  33. Merz P (2002) Nk-fitness landscapes and memetic algorithms with greedy operators and k-opt local search. In: Krasnogor N (ed) Proc. of the Third International Workshop on Memetic Algorithms (WOMA III)

    Google Scholar 

  34. Merz P, Katayama K (2004) Bio Systems 79(1–3):99–118

    Google Scholar 

  35. Mladenovic N, Hansen P (1997) Computers in Operations Research 24:1097–1100

    Google Scholar 

  36. Moscato P (1999) Memetic algorithms: a short introduction. In: Corne D, Dorigo M, Glover F (eds), New Ideas in Optimization. McGraw-Hill, London

    Google Scholar 

  37. Nasimul N, Hitoshi I (2005) Enhancing differential evolution performance with local search for high dimensional function optimization. In: Beyer HG, O’Reilly UM, Arnold DV, Banzhaf W, Blum C, Bonabeau EW, Cantu-Paz E, Dasgupta D, Deb K, Foster JA, De Jong ED, Lipson H, Llora X, Mancoridis S, Pelikan M, Raidl GR, Soule T, Tyrrell AM, Watson J-P, Zitzler E (eds) Proc. of the Genetic and Evolutionary Computation Conference. ACM Press, New York

    Google Scholar 

  38. Papadakis SE, Theocharis JB (2002) Fuzzy Sets and Systems 131(2):121–152

    Google Scholar 

  39. Potter MA. http://www.cs.uwyo.edu/∼wspears/nk.c

    Google Scholar 

  40. Potts JC, Giddens TD, Yadav SB (1994) IEEE Transactions on Systems, Man, and Cybernetics 24:73–86

    Google Scholar 

  41. Resende MGC, Ribeiro CC (2003) International Series in Operations Research and Management Science 57:219–250

    Google Scholar 

  42. Smith K, Hoos HH, Stützle T (2003) Iterated robust tabu search for MAX-SAT. In: Carbonell JG, Siekmann J (eds) Proc. of the 16th conference on the Canadian Society for Computational Studies of Intelligence, LNCS 2671. Springer, Berlin Heidelberg

    Google Scholar 

  43. Spears WM. http://www.cs.uwyo.edu/∼wspears/epist.html

    Google Scholar 

  44. Sywerda G (1989) Uniform crossover in genetic algorithms. In: Schaffer JD (ed) Proc. of the Third International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, CA, USA

    Google Scholar 

  45. Tanese R (1987) Parallel genetic algorithms for a hypercube. In: Grefenstette JJ (ed) Proc. of the Second International Conference on Genetic Algorithms Applications. Hillsdale, NJ, Lawrence Erlbraum

    Google Scholar 

  46. Thierens D (2004) Population-based iterated local search: restricting neighborhood search by crossover. In: Deb K, Poli R, Banzhaf W, Beyer H-G, Burke EK, Darwen PJ, Dasgupta D, Floreano D, Foster JA, Harman M, Holland O, Lanzi PL, Spector L, Tettamanzi A, Thierens D, Tyrrell AM (eds) Proc. of the Genetic and Evolutionary Computation Conference, LNCS 3103. Springer, Berlin Heidelberg

    Google Scholar 

  47. Tsutsui S, Ghosh A, Corne D, Fujimoto Y (1997) A real coded genetic algorithm with an explorer and an exploiter population. In: Bäck T (ed) Proc. of the Seventh International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  48. Weicai Z, Jing L, Mingzhi X, Licheng J (2004) IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics 34(2):1128–1141

    Google Scholar 

  49. Whitley D (1989) The GENITOR algorithm and selection pressure: why rank-based allocation of reproductive trials is best. In: Schaffer JD (ed) Proc. of the Third International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, CA, USA

    Google Scholar 

  50. Ye Y. http://www.stanford.edu/ yyye/yyye/Gset/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

García-Martínez, C., Lozano, M. (2007). Local Search Based on Genetic Algorithms. In: Siarry, P., Michalewicz, Z. (eds) Advances in Metaheuristics for Hard Optimization. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72960-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72960-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72959-4

  • Online ISBN: 978-3-540-72960-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics