Abstract
This paper surveys some aspects of the graph theoretic notion of treewidth. In particular, we look at the interaction between different characterizations of the notion, and algorithms and algorithmic applications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability – A survey. BIT 25, 2–23 (1985)
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)
Arnborg, S., et al.: An algebraic theory of graph reduction. J. ACM 40, 1134–1164 (1993)
Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12, 308–340 (1991)
Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees. SIAM J. Alg. Disc. Meth. 7, 305–314 (1986)
Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Disc. Appl. Math. 23, 11–24 (1989)
Bachoore, E.H., Bodlaender, H.L.: A branch and bound algorithm for exact, upper, and lower bounds on treewidth. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 255–266. Springer, Heidelberg (2006)
Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Mathematical Systems Theory 20, 83–127 (1987)
Bellenbaum, P., Diestel, R.: Two short proofs concerning tree-decompositions. Combinatorics, Probability, and Computing 11, 541–547 (2002)
Berry, A., Bordat, J.-P., Cogis, O.: Generating all the minimal separators of a graph. Int. J. Found. Computer Science 11, 397–404 (2000)
Bienstock, D.: Graph searching, path-width, tree-width and related problems (a survey). In: Reliability Of Computer And Communication Network. DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science, vol. 5, pp. 33–49 (1991)
Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23 (1993)
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comp. Sc. 209, 1–45 (1998)
Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., et al. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)
Bodlaender, H.L.: Treewidth: Characterizations, applications, and computations. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg (2006)
Bodlaender, H.L., et al.: On exact algorithms for treewidth. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 672–683. Springer, Heidelberg (2006)
Bodlaender, H.L., Grigoriev, A., Koster, A.M.C.A.: Treewidth lower bounds with brambles. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 391–402. Springer, Heidelberg (2005)
Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21, 358–402 (1996)
Bodlaender, H.L., Koster, A.M.C.A., van de Eijkhof, F.: Pre-processing rules for triangulation of probabilistic networks. Computational Intelligence 21(3), 286–305 (2005)
Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Parallel algorithms for series parallel graphs and graphs with treewidth two. Algorithmica 29, 543–559 (2001)
Bodlaender, H.L., et al.: On interval routing schemes and treewidth. Information and Computation 139(1), 92–109 (1997)
Borie, R.B.: Recursively Constructed Graph Families. PhD thesis, School of Information and Computer Science, Georgia Institute of Technology (1988)
Borie, R.B.: Generation of polynomial-time algorithms for some optimization problems on tree-decomposable graphs. Algorithmica 14, 123–137 (1995)
Borie, R.B., Parker, R.G., Tovey, C.A.: Deterministic decomposition of recursive graph classes. SIAM J. Disc. Math. 4, 481–501 (1991)
Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7, 555–581 (1992)
Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31, 212–232 (2001)
Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comp. Sc. 276, 17–32 (2002)
Clautiaux, F., et al.: Heuristic and meta-heuristic methods for computing graph treewidth. RAIRO Operations Research 38, 13–26 (2004)
Cockayne, E.J., Goodman, S.E., Hedetniemi, S.T.: A linear algorithm for the domination number of a tree. Information Processing Letters 4, 41–44 (1975)
Colbourn, C.J., Stewart, L.K.: Dominating cycles in series-parallel graphs. Ars Combinatorica 19A, 107–112 (1985)
Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)
Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-decomposable graphs. Theor. Comp. Sc. 109, 49–82 (1993)
Daykin, D.E., Ng, C.P.: Algorithms for generalized stability numbers of tree graphs. J. Austral. Math. Soc. 6, 89–100 (1966)
Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications. Unpublished manuscript (2006)
Dendris, N.D., Kirousis, L.M., Thilikos, D.M.: Fugitive-search games on graphs and related parameters. Theor. Comp. Sc. 172, 233–254 (1997)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1998)
Duffin, R.J.: Topology of series-parallel graphs. J. Math. Anal. Appl. 10, 303–318 (1965)
Ellis, J.A., Sudborough, I.H., Turner, J.: The vertex separation and search number of a graph. Information and Computation 113, 50–79 (1994)
Fellows, M.R., Langston, M.A.: Nonconstructive advances in polynomial-time complexity. Information Processing Letters 26, 157–162 (1987)
Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. J. ACM 35, 727–739 (1988)
Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in. In: Díaz, J., et al. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)
Franklin, M., Galil, Z., Yung, M.: Eavesdropping games: A graph-theoretic approach to privacy in distributed systems. J. ACM 47, 225–243 (2000)
Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory Series B 16, 47–56 (1974)
Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence UAI-04, Arlington, Virginia, USA, pp. 201–208. AUAI Press (2004)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Gu, Q.-P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n 3) time. In: Caires, L., et al. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 373–384. Springer, Heidelberg (2005)
Habel, A., Kreowski, H.J.: Characteristics of graph languages generated by edge replacement. Theor. Comp. Sc. 51, 81–115 (1987)
Habel, A., Kreowski, H.J.: May we introduce to you: hyperedge replacement. In: Ehrig, H., et al. (eds.) Graph Grammars 1986. LNCS, vol. 291, pp. 15–26. Springer, Heidelberg (1987)
Hare, E., et al.: Linear-time computability of combinatorial problems on generalized-series-parallel graphs. In: Johnson, D.S., et al. (eds.) Proc. of the Japan-US Joint Seminar on Discrete Algorithms and Complexity, Orlando, Florida, Academic Press, London (1987)
Hassin, R., Tamir, A.: Efficient algorithms for optimization and selection on series-parallel graphs. SIAM J. Alg. Disc. Meth. 7, 379–389 (1986)
Held, M., Karp, R.: A dynamic programming approach to sequencing problems. J. SIAM 10, 196–210 (1962)
Hicks, I.V.: Planar branch decompositions I: The ratcatcher. INFORMS J. on Computing 17, 402–412 (2005)
Hicks, I.V.: Planar branch decompositions II: The cycle method. INFORMS J. on Computing 17, 413–421 (2005)
Hicks, I.V., Koster, A.M.C.A., Kolotoğlu, E.: Branch and tree decomposition techniques for discrete optimization. In: Smith, J.C. (ed.) TutORials 2005, INFORMS Annual Meeting. INFORMS Tutorials in Operations Research Series, pp. 1–29 (2005)
Hliněný, P., et al.: Width parameters beyond tree-width and their applications. Paper to appear in this special issue (2006)
Kikuno, T., Yoshida, N., Kakuda, Y.: A linear algorithm for the domination number of a series-parallel graph. Disc. Appl. Math. 5, 299–311 (1983)
Kinnersley, N.G.: The vertex separation number of a graph equals its path width. Information Processing Letters 42, 345–350 (1992)
Kirousis, L.M., Papadimitriou, C.H.: Interval graphs and searching. Disc. Math. 55, 181–184 (1985)
Kleinberg, J., Tardos, É.: Algorithm Design. Addison-Wesley, Boston (2005)
Kloks, T., Kratsch, D.: Listing all minimal separators of a graph. SIAM J. Comput. 27(3), 605–613 (1998)
Koster, A.M.C.A., van Hoesel, S.P.M., Kolen, A.W.J.: Solving partial constraint satisfaction problems with tree decomposition. Networks 40(3), 170–180 (2002)
Lapoire, D.: Recognizability equals definability, for every set of graphs of bounded tree-width. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 618–628. Springer, Heidelberg (1998)
Lautemann, C.: Efficient algorithms on context-free graph languages. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 362–378. Springer, Heidelberg (1988)
Lautemann, C.: The complexity of graph languages generated by hyperedge replacement. Acta Informatica 27, 399 (1990)
Matoušek, J., Thomas, R.: Algorithms for finding tree-decompositions of graphs. J. Algorithms 12, 1–22 (1991)
Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Disc. Appl. Math. 79, 171–188 (1997)
Pfaff, J., Laskar, R., Hedetniemi, S.T.: Linear algorithms for independent domination and total domination in series-parallel graphs. Congressus Numerantium 45, 71–82 (1984)
Reed, B.A.: Tree width and tangles, a new measure of connectivity and some applications. In: Surveys in Combinatorics. LMS Lecture Note Series, vol. 241, pp. 87–162. Cambridge University Press, Cambridge (1997)
Reed, B.A.: Algorithmic aspects of tree width. In: Recent Advances in Algorithms and Combinatorics. CMS Books in Mathematics, pp. 85–107. Springer, New York (2003)
Richey, M.B.: Combinatorial optimization on series-parallel graphs: algorithms and complexity. PhD thesis, School of Industrial and Systems Engineering, Georgia Institute of Technology (1985)
Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7, 309–322 (1986)
Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory Series B 63, 65–110 (1995)
Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)
Sanders, D.P.: On linear recognition of tree-width at most four. SIAM J. Disc. Math. 9(1), 101–117 (1996)
Seymour, P.D., Thomas, R.: Graph searching and a minimax theorem for tree-width. J. Comb. Theory Series B 58, 239–257 (1993)
Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)
Skodinis, K.: Construction of linear tree-layouts which are optimal with respect to vertex separation in linear time. J. Algorithms 47, 40–59 (2003)
Sysło, M.M.: Series-parallel graphs and depth-first search trees. IEEE Trans. on Circuits and Systems 31(12), 1029–1033 (1984)
Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinatorial problems on series-parallel graphs. J. ACM 29, 623–641 (1982)
Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Disc. Math. 10, 529–550 (1997)
Villanger, Y.: Improved exponential-time algorithms for treewidth and minimum fill-in. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 800–811. Springer, Heidelberg (2006)
Wimer, T.V.: Linear algorithms for the dominating cycle problems in series-parallel graphs, 2-trees and Halin graphs. Congressus Numerantium 56 (1987)
Wimer, T.V.: Linear Algorithms on k-Terminal Graphs. PhD thesis, Dept. of Computer Science, Clemson University (1987)
Wimer, T.V., Hedetniemi, S.T., Laskar, R.: A methodology for constructing linear graph algorithms. Congressus Numerantium 50, 43–60 (1985)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Bodlaender, H.L. (2007). Treewidth: Structure and Algorithms. In: Prencipe, G., Zaks, S. (eds) Structural Information and Communication Complexity. SIROCCO 2007. Lecture Notes in Computer Science, vol 4474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72951-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-72951-8_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72918-1
Online ISBN: 978-3-540-72951-8
eBook Packages: Computer ScienceComputer Science (R0)