[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Posynomial Fuzzy Relation Geometric Programming

  • Conference paper
Foundations of Fuzzy Logic and Soft Computing (IFSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4529))

Included in the following conference series:

Abstract

In this paper, the concept and type of posynomial fuzzy relation geometric programming is introduced, some basic theories of posynomial fuzzy relation geometric programming is presented, and then a solution procedure is expatiated to solving such a programming based on structure of feasible region. And finally, two practical examples are given for illustration purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellmann, R., Zadeh, L.A.: Decision Making in Fuzzy Environment. Management Science 17(4), 141–164 (1970)

    Article  MathSciNet  Google Scholar 

  2. Sanchez, E.: Resolution of composite fuzzy relation equations. Inform. and Control 30, 38–48 (1976)

    Article  MATH  Google Scholar 

  3. Wang, J.Y.: Fuzzy Relation Equations and Their applications. Hunan Science and Technology Press, Changsha (1991)

    Google Scholar 

  4. Fang, S.C., Li, G.Z.: Solving fuzzy relation with a linear objective function. Fuzzy Sets and Systems 103, 107–113 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ghodousian, A., Khorram, E.: An algorithm for optimizing the linear function with fuzzy relation equation constraints regarding max-prod composition. Applied Mathematics and Computation 178, 502–509 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Lu, J.J., Fang, S.C.: Solving nonlinear optimization problems with fuzzy relation equation constraints. Fuzzy Sets and Systems 119, 1–20 (2001)

    Article  MathSciNet  Google Scholar 

  7. Higashi, M., Klir, G.J.: Resolution of finite fuzzy relation equations. Fuzzy Sets and Systems 13, 65–82 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhang, W.X.: The introduction of fuzzy mathematics. Xi’an Jiaotong University Publishing House, Xi’an (1991)

    Google Scholar 

  9. Wang, X.P.: Conditions Under Which a Fuzzy Relational Equation has Minimal Solutions in a Complete Brouwerian Lattice. Advances in Mathematics (China) 31(3), 220–228 (2002)

    MathSciNet  Google Scholar 

  10. Wang, P.Z., Zhang, D.Z., Sanchez, E., Lee, E.S.: Latticized linear programming and fuzzy relation inequalities. Journal of mathematical analysis and applications 159(1), 72–87 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Avriel, M. (ed.): Advances in Geometric Programming. Mathematical Concept and Methods in Science and Engineering, vol. 21. Plenum Press, New York (1980)

    MATH  Google Scholar 

  12. Zimmermann, H.J.: Fuzzy Set Theory and Its applications. Kluwer-Nijhoff, Boston (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Yang, Jh., Cao, By. (2007). Posynomial Fuzzy Relation Geometric Programming. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics