Abstract
Let G be any subgroup of the group of Möbius transformations and a set of stabilizers and their intersections. Taking a fuzzy subgroup of G given by means of stabilizers of G as the mapping , we examine the behaviour of the meet operation ∧ in .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beardon, A.F.: The Geometry of Discrete Groups. Springer, New York (1983)
Kukkurainen, P.: Level Sets as a Topological Base Applied to Subgroups of a Group of Moebius Transformations. JACIII 9(5), 511–513 (2005)
Seppälä, M., Sorvali, T.: Geometry of Riemann Surfaces and Teichmüller spaces. North-Holland Mathematics Studies, vol. 169. North Holland, Amsterdam (1992)
Seselja, B., Tepavcevic, A.: Fuzzy groups and collections of subgroups. Fuzzy Sets and Systems 83, 85–91 (1996)
Seselja, B., Tepavcevic, A.: On a construction on codes by P-fuzzy sets. Zb. Rad. Priod.-Mat. 20, 71–80 (1990)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Kukkurainen, P. (2007). Fuzzy Subgroups with Meet Operation in the Connection of Möbius Transformations. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_44
Download citation
DOI: https://doi.org/10.1007/978-3-540-72950-1_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72917-4
Online ISBN: 978-3-540-72950-1
eBook Packages: Computer ScienceComputer Science (R0)