[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Constellations and the Unsupervised Learning of Graphs

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4538))

Abstract

In this paper, we propose a novel method for the unsupervised clustering of graphs in the context of the constellation approach to object recognition. Such method is an EM central clustering algorithm which builds prototypical graphs on the basis of fast matching with graph transformations. Our experiments, both with random graphs and in realistic situations (visual localization), show that our prototypes improve the set median graphs and also the prototypes derived from our previous incremental method. We also discuss how the method scales with a growing number of images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguilar, W.: Object recognition based on the structural correspondence of local features. MsThesis, UNAM, México (2006)

    Google Scholar 

  2. Bunke, H., Foggia, P., Guiobaldi, C., Vento, M.: Graph clustering using the weighted minimum common supergraph. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 235–246. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Crandall, D., Felzenszwalb, P., Huttenlocher, D.: Spatial priors for part-based recognition using statistical models. In: Proc. Intl. Conf. on Computer Vision and Pattern Recognition, San Diego, CA, pp. 10–17 (2005)

    Google Scholar 

  4. Chung, F.R.K.: Spectral graph theory. In: Conference Board of Mathematical Science CBMS, American Matematical Society, Providence, RI, vol. 92 (1997)

    Google Scholar 

  5. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)

    Article  Google Scholar 

  6. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. International Journal on Computer Vision 61(1), 57–59 (2005)

    Article  Google Scholar 

  7. Jain, B., Wysotzki, F.: Central clustering for attributed graphs. Machine Learning 56, 169–207 (2004)

    Article  MATH  Google Scholar 

  8. Jiang, X., Münger, A., Bunke, H.: On median graphs: properties, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1144–1151 (2001)

    Article  Google Scholar 

  9. Kadir, T., Brady, M.: Saliency, scale and image description. International Journal of Computer Vision 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  10. Kokkinos, I., Maragos, P., Yuille, A.L.: Bottom-up & top-down object detection using primal sketch features and graphical models. In: Proc. Intl. Conf. on Computer Vision and Pattern Recognition, New York, NY, pp. 1893–1900 (2006)

    Google Scholar 

  11. Kondor, R., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. In: Proc. Intl. Conf. on Machine Learning, Los Altos CA, pp. 315–322 ( 2002)

    Google Scholar 

  12. Leung, T.K., Burl, M.C., Perona, P.: Finding faces in cluttered scenes using random labeled graph matching. In: Proc. IEEE Intl. Conf. on Computer Vision, Cambridge MA, pp. 637–644 ( 1995)

    Google Scholar 

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Lozano, M.A., Escolano, F.: ACM attributed graph clustering for learning classes of images. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 247–258. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Lozano, M.A., Escolano, F.: A significant improvement of softassign with diffusion kernels. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A., de Ridder, D. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 3138, pp. 76–84. Springer, Heidelberg (2004)

    Google Scholar 

  16. Lozano, M.A., Escolano, F.: Protein classification by matching and clustering surface graphs. Pattern Recognition 39(4), 539–551 (2006)

    Article  MATH  Google Scholar 

  17. Suau, P., Escolano, F.: Bayesian optimization of the Kadir saliency filter. Submitted to Image and Vision Computing (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Escolano Mario Vento

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonev, B., Escolano, F., Lozano, M.A., Suau, P., Cazorla, M.A., Aguilar, W. (2007). Constellations and the Unsupervised Learning of Graphs. In: Escolano, F., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2007. Lecture Notes in Computer Science, vol 4538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72903-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72903-7_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72902-0

  • Online ISBN: 978-3-540-72903-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics