Abstract
In this paper, we propose a novel method for the unsupervised clustering of graphs in the context of the constellation approach to object recognition. Such method is an EM central clustering algorithm which builds prototypical graphs on the basis of fast matching with graph transformations. Our experiments, both with random graphs and in realistic situations (visual localization), show that our prototypes improve the set median graphs and also the prototypes derived from our previous incremental method. We also discuss how the method scales with a growing number of images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguilar, W.: Object recognition based on the structural correspondence of local features. MsThesis, UNAM, México (2006)
Bunke, H., Foggia, P., Guiobaldi, C., Vento, M.: Graph clustering using the weighted minimum common supergraph. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 235–246. Springer, Heidelberg (2003)
Crandall, D., Felzenszwalb, P., Huttenlocher, D.: Spatial priors for part-based recognition using statistical models. In: Proc. Intl. Conf. on Computer Vision and Pattern Recognition, San Diego, CA, pp. 10–17 (2005)
Chung, F.R.K.: Spectral graph theory. In: Conference Board of Mathematical Science CBMS, American Matematical Society, Providence, RI, vol. 92 (1997)
Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)
Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. International Journal on Computer Vision 61(1), 57–59 (2005)
Jain, B., Wysotzki, F.: Central clustering for attributed graphs. Machine Learning 56, 169–207 (2004)
Jiang, X., Münger, A., Bunke, H.: On median graphs: properties, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1144–1151 (2001)
Kadir, T., Brady, M.: Saliency, scale and image description. International Journal of Computer Vision 45(2), 83–105 (2001)
Kokkinos, I., Maragos, P., Yuille, A.L.: Bottom-up & top-down object detection using primal sketch features and graphical models. In: Proc. Intl. Conf. on Computer Vision and Pattern Recognition, New York, NY, pp. 1893–1900 (2006)
Kondor, R., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. In: Proc. Intl. Conf. on Machine Learning, Los Altos CA, pp. 315–322 ( 2002)
Leung, T.K., Burl, M.C., Perona, P.: Finding faces in cluttered scenes using random labeled graph matching. In: Proc. IEEE Intl. Conf. on Computer Vision, Cambridge MA, pp. 637–644 ( 1995)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Lozano, M.A., Escolano, F.: ACM attributed graph clustering for learning classes of images. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 247–258. Springer, Heidelberg (2003)
Lozano, M.A., Escolano, F.: A significant improvement of softassign with diffusion kernels. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A., de Ridder, D. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 3138, pp. 76–84. Springer, Heidelberg (2004)
Lozano, M.A., Escolano, F.: Protein classification by matching and clustering surface graphs. Pattern Recognition 39(4), 539–551 (2006)
Suau, P., Escolano, F.: Bayesian optimization of the Kadir saliency filter. Submitted to Image and Vision Computing (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bonev, B., Escolano, F., Lozano, M.A., Suau, P., Cazorla, M.A., Aguilar, W. (2007). Constellations and the Unsupervised Learning of Graphs. In: Escolano, F., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2007. Lecture Notes in Computer Science, vol 4538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72903-7_31
Download citation
DOI: https://doi.org/10.1007/978-3-540-72903-7_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72902-0
Online ISBN: 978-3-540-72903-7
eBook Packages: Computer ScienceComputer Science (R0)