Abstract
We consider the problem of maintaining a minimum spanning tree of a dynamically changing graph, subject to changes on edge weights. We propose an on-line fully-dynamic algorithm that runs in time O(|E|) when the easy-to-implement DRD-trees data structure for dynamic trees is used. Numerical experiments illustrate the efficiency of the approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amato, G., Cattaneo, G., Italiano, G.F.: Experimental analysis of dynamic minimum spanning tree algorithms (extended abstract). In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 314–323. New Orleans (1997)
Buriol, L.S., Resende, M.G.C., Ribeiro, C.C., Thorup, M.: A memetic algorithm for OSPF routing. In: Proceedings of the 6th INFORMS Telecom, pp. 187–188. Boca Raton (2002)
Buriol, L.S., Resende, M.G.C., Ribeiro, C.C., Thorup, M.: A hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS routing. Networks 46, 36–56 (2005)
Buriol, L.S., Resende, M.G.C., Thorup, M.: Speeding up shortest path algorithms. Technical Report TD-5RJ8B, AT&T Labs Research (September 2003)
Cattaneo, G., Faruolo, P., Ferraro-Petrillo, U., Italiano, G.F.: Maintaining dynamic minimum spanning trees: An experimental study. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 111–125. Springer, Heidelberg (2002)
Demetrescu, C., Goldberg, A., Johnson, D.: Ninth DIMACS implementation challenge – shortest paths (2006), On-line reference at http://www.dis.uniroma1.it/c̃hallenge9/ , last visited in June 23
Eppstein, D., Galil, Z., Italiano, G.F., Nissemzweig, A.: Sparsification – A technique for speeding up dynamic graph algorithms. Journal of the ACM 44, 669–696 (1997)
Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees, with applications. SIAM Journal on Computing 14, 781–798 (1985)
Frederickson, G.N.: Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning trees. In: Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, pp. 632–641. San Juan (1991)
Henzinger, M.H., King, V.: Maintaining minimum spanning trees in dynamic graphs. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 594–604. Springer, Heidelberg (1997)
Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. In: Proceedings of the 30th ACM Symposium on Theory of Computing, pp. 79–89. ACM Press, New York (1998)
Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. of the American Mathematical Society 7, 48–50 (1956)
Prim, R.C.: Shortest connection networks and some generalizations. Bell Systems Technical Journal 36, 1389–1401 (1957)
Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM 33, 668–676 (1990)
Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Journal of Computer and System Sciences 26, 362–391 (1983)
Spira, P.M., Pan, A.: On finding and updating spanning trees and shortest paths. SIAM Journal on Computing 4, 375–380 (1975)
Werneck, R.F., Tarjan, R.E.: Self-adjusting top trees. In: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 813–822. Vancouver (2005)
Zaroliagis, C.D.: Implementations and experimental studies of dynamic graph algorithms. In: Fleischer, R., Moret, B.M.E., Schmidt, E.M. (eds.) Experimental Algorithmics. LNCS, vol. 2547, pp. 229–278. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Ribeiro, C.C., Toso, R.F. (2007). Experimental Analysis of Algorithms for Updating Minimum Spanning Trees on Graphs Subject to Changes on Edge Weights. In: Demetrescu, C. (eds) Experimental Algorithms. WEA 2007. Lecture Notes in Computer Science, vol 4525. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72845-0_30
Download citation
DOI: https://doi.org/10.1007/978-3-540-72845-0_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72844-3
Online ISBN: 978-3-540-72845-0
eBook Packages: Computer ScienceComputer Science (R0)