Abstract
The conventional Empirical mode decomposition (EMD) method uses envelope mean interpolated by cubic spline fitting, which is sensitive to extrema. An efficient method for finding the local mean is generated by using support vector regression machines. The analysis results indicate that the proposed algorithm has higher performance in the ability of frequency separation, insensitive to the sampling frequency and can eliminate mode mixing in small-amplitude sine waves intermittence.
Chapter PDF
Similar content being viewed by others
Keywords
References
Huang, N.E., Shen, Z.: A new view of nonlinear water waves: the Hilbert spectrum. A. Rev. Fluid Mech. 31, 417–457 (1999)
Deering, R., Kaiser, J.F.: The use of a masking signal to improve empirical mode decomposition. In: ICASSP2005, vol. 4, pp. 485–488 (2005)
Zhong, Y.M.: Research on theoretic evidence and realization of directly-mean EMD method. Chinese Journal of mechanical engineering 17, 399–404 (2004)
Qin, S.R., Zhong, Y.M.: A new envelope algorithm of Hilbert–Huang Transform. Mechanical Systems and Signal Processing 20, 1941–1952 (2006)
Chen, Q.H., Huang, N.E., Riemenschneider, S.: A B-spline approach for empirical mode decompositions. Advances in Computational Mathematics 24, 171–195 (2006)
Cherkassy, V., Ma, Y.Q.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17, 113–126 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Huang, YP., Li, XY., Zhang, RB. (2007). A Research on Local Mean in Empirical Mode Decomposition. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds) Computational Science – ICCS 2007. ICCS 2007. Lecture Notes in Computer Science, vol 4489. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72588-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-72588-6_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72587-9
Online ISBN: 978-3-540-72588-6
eBook Packages: Computer ScienceComputer Science (R0)