Abstract
SymGrid-Par is a new framework for executing large computer algebra problems on computational Grids. We present the design of SymGrid-Par, which supports multiple computer algebra packages, and hence provides the novel possibility of composing a system using components from different packages. Orchestration of the components on the Grid is provided by a Grid-enabled parallel Haskell (GpH). We present a prototype implementation of a core component of SymGrid-Par, together with promising measurements of two programs on a modest Grid to demonstrate the feasibility of our approach.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
GridMathematica2, http://www.wolfram.com/products/gridmathematica/
High performance computations in group representation theory. Preprint, Institut für Experimentelle Mathematik, Univerisität GH Essen (1998)
GENSS (2006), http://genss.cs.bath.ac.uk/index.htm
Geodise (2006), http://www.geodise.org/
The GpH-Maple Interface (2006), http://www.risc.uni-linz.ac.at/software/ghc-maple/
The OpenMath Format (2006), http://www.openmath.org/
Agrawal, S., Dongarra, J., Seymour, K., Vadhiyar, S.: NetSolve: past, present, and future; a look at a Grid enabled server. In: Making the Global Infrastructure a Reality, pp. 613–622. Wiley, Chichester (2003)
Al Zain, A., Trinder, P., Loidl, H.-W., Michaelson, G.: Managing Heterogeneity in a Grid Parallel Haskell. J. Scalable Comp.: Practice and Experience 6(4) (2006)
Amrheim, B., Gloor, O., Kuchlin, W.: A case study of multithreaded grobner basis completion. In: Proc. of ISSAC’96, pp. 95–102. ACM Press, New York (1996)
Bundgen, R., Gobel, M., Kuchlin, W.: Multi-threaded ac term re-writing. In: Proc. PASCO’94, vol. 5, pp. 84–93. World Scientific, Singapore (1994)
Chan, K.C., Draz, A., Kaltofen, E.: A Distributed Approach to Problem Solving in Maple. In: Proc. 5th Maple Summer Workshop and Symp, pp. 13–21 (1994)
Char, B.W., et al.: Maple V Language Reference Manual. Maple Publishing, Waterloo (1991)
Char, B.W.: A user’s guide to Sugarbush - Parallel Maple through Linda. Technical report, Drexel University, Dept. of Mathematics and Comp. Sci (1994)
Cole, M.: Algorithmic Skeletons. In: Hammond, K., Michaelson, G. (eds.) Research Directions in Parallel Functional Programming, pp. 289–304. Springer, Heidelberg (1999)
Cooperman, G.: Parallel gap: Mature interactive parallel. In: Groups and computation, III, Columbus, OH, 1999, Walter de Gruyter, Berlin (2001)
Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M., Wildanger, K.: Kant v4. J. Symb. Comput. 24(3/4), 267–283 (1997)
Delaitre, T., Goyeneche, A., Kacsuk, P., Kiss, T., Terstyanszky, G.Z., Winter, S.C.: GEMLCA: Grid Execution Management for Legacy Code Architecture Design. In: Proc. 30th EUROMICRO Conference, pp. 305–315 (2004)
The GAP Group: Gap – groups, algorithms, and programming, version 4.2. St. Andrews (2000) http://www.gap-system.org/gap.
Kuchlin, W.: Parsac-2: A parallel sac-2 based on threads. In: Sakata, S. (ed.) AAECC 1990. LNCS, vol. 508, pp. 341–353. Springer, Heidelberg (1991)
Martínez, R., Peña, R.: Building an Interface Between Eden and Maple: A Way of Parallelizing Computer Algebra Algorithms. In: Trinder, P., Michaelson, G.J., Peña, R. (eds.) IFL 2003. LNCS, vol. 3145, pp. 135–151. Springer, Heidelberg (2004)
Morisse, K., Kemper, A.: The Computer Algebra System MuPAD. Euromath Bulletin 1(2), 95–102 (1994)
Petcu, D., Paprycki, M., Dubu, D.: Design and Implementation of a Grid Extension of Maple (2005)
Roch, L., Villard, G.: Parallel computer algebra. In: ISSAC’97, Preprint IMAG, Grenoble, France (1997)
Tepeneu, D., Ida, T.: MathGridLink – Connecting Mathematica to the Grid. In: Proc. IMS ’04, Banff, Alberta (2004)
Trinder, P.W., Hammond, K., Loidl, H.-W., Peyton Jones, S.L.: Algorithm + Strategy = Parallelism. J. Functional Programming 8(1), 23–60 (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Zain, A.A., Hammond, K., Trinder, P., Linton, S., Loidl, HW., Costanti, M. (2007). SymGrid-Par: Designing a Framework for Executing Computational Algebra Systems on Computational Grids. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds) Computational Science – ICCS 2007. ICCS 2007. Lecture Notes in Computer Science, vol 4488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72586-2_90
Download citation
DOI: https://doi.org/10.1007/978-3-540-72586-2_90
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72585-5
Online ISBN: 978-3-540-72586-2
eBook Packages: Computer ScienceComputer Science (R0)